
LABORATORY
MANUAL

LABORATORY
MANUAL

Microprocessor
and

Microcontroller

ELECTRONICS &
COMMUNICATION

ENGINEERING

COLLEGE OF
ENGINEERING

AND
MANAGEMENT,

KOLAGHAT

Microprocessor
and

Microcontroller

ELECTRONICS &
COMMUNICATION

ENGINEERING

COLLEGE OF
ENGINEERING

AND
MANAGEMENT,

KOLAGHAT

Revised December 2024

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Vision

Pursuing Excellence in Teaching-Learning Process to Produce

High-Quality Electronics and Communication Engineering

Professionals.

Mission

To enhance the employability of our students by strengthening

their creativity with different innovative ideas by imparting high-

quality technical and professional education with continuous

performance improvement monitoring systems.

To carry out research through constant interaction with research

organizations and industry.

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Program Outcomes (POs)

1
Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

2
Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using the first principles of
mathematics, natural sciences, and engineering sciences

3

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for public health and safety, and cultural, societal, and environmental
considerations.

4
Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

5
Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

6
The engineer and society: Apply reason informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

7
Environment and sustainability: Understand the impact of professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

8
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice

9
Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11
Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12
Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Program Specific Outcomes (PSOs)

PSO-1
An ability to design and conduct the experiments, analyse and interpret the data using
modern software or hardware tools with proper understanding (basic conceptions) of
Electronics and Communication Engineering.

PSO-2
Ability to identify, formulate & solve problems and apply the knowledge of electronics
and communication to develop techno-commercial applications

Course Outcomes (COs)

CO-1
The students will be able to acquire the knowledge of internal architecture of 8085
microprocessor and the skills in Assembly Language Programming of 8085
microprocessor.

CO-2
The students will acquire the knowledge of internal architecture of 8051 microcontroller
and also develop their skills in Assembly Language Programming of 8051
microcontroller.

CO-3
The student will be able to gather knowledge of interfacing 8085 microprocessor and
8051 microcontroller with various hardware devices along with the software interaction
and integration.

CO-4
The students will be able to apply the concepts in the design of microprocessor/
microcontroller based systems in real time applications.

CO – PO Mapping

PO-1 PO-2 PO-3 PO-4 PO-5 PO-6 PO-7 PO-8 PO-9 PO-10 PO-11 PO-12

CO-1 3 3 3 3 3 0 0 0 0 2 2 2

CO-2 3 2 3 3 2 0 0 0 0 2 2 2

CO-3 3 3 3 3 3 1 0 0 3 2 3 3

CO-4 3 3 3 3 3 1 0 0 3 2 3 3

CO – PSO Mapping

PSO-1 PSO-2

CO-1 3 3

CO-2 3 3

CO-3 3 3

CO-4 3 3

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

LIST OF CONTENTS

Contents of 8085 Microprocessor

1. Familiarization with 8085 simulator 1 - 7

➢ 1.1 Installation of Jubin’s 8085 simulator 2

➢ 1.2 How to use Jubin’s 8085 simulator 2

➢ 1.3 Procedure to write programs in Jubin’s 8085 simulator 4

➢ 1.4 Procedure to save/ load program in Jubin’s 8085 simulator 6

➢ 1.5 Procedure to execute a program in Jubins 8085 simulator 6

2. Familiarization with 8085 Trainer Kit 8 - 10

➢ 2.1 Functions of different keys of 8085 Trainer Kit 9

➢ 2.2 Procedure to load program code in 8085 Trainer Kit 9

➢ 2.3 Procedure to execute program in 8085 Trainer Kit 10

➢ 2.4 Procedure to show the result in 8085 Trainer Kit 10

3. Programs on Arithmetic and Logical Operations 11 - 50

➢ 3.1 Addition of two 8-bit numbers 11

➢ 3.2 Addition of ten 8-bit numbers 14

➢ 3.3 Addition of two 16-bit numbers 19

➢ 3.4 Addition of two 64-bit numbers 23

➢ 3.5 Subtraction of two 8-bit numbers 27

➢ 3.6 Subtraction of two 16-bit numbers 29

➢ 3.7 Multiplication of two 8-bit numbers using successive addition 32

➢ 3.7 Multiplication of two 8-bit numbers using shift and add method 35

➢ 3.8 Multiplication of two 16-bit numbers using shift and add method 38

➢ 3.9 Division of two 8-bit numbers using successive subtraction 43

➢ 3.10 Division of two 16-bit numbers using successive subtraction 45

4. Programs on Data Transfer and Data Separation 51 – 62

➢ 4.1 Transfer a block of data in forward direction without overlapping 51

➢ 4.2 Transfer a block of data in forward direction with overlapping 54

➢ 4.3 Separation of positive and negative numbers 58

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Contents of 8085 Microprocessor

5. Programs on Searching and Sorting 63 – 78

➢ 5.1 Find the largest number from a set of numbers 63

➢ 5.2 Find the largest and smallest number from a set of numbers 66

➢ 5.3 Arrange a set of numbers in ascending order using bubble sort 69

➢ 5.4 Merge two sorted list of numbers into a third sorted list 73

6. Programs on Data Conversion 79 – 96

➢ 6.1 Convert a 2-digit packed BCD to two unpacked BCDs 79

➢ 6.2 Convert two unpacked BCD numbers into a 2-digit packed BCD 81

➢ 6.3 Convert a 2-digit packed BCD number to hexadecimal number 82

➢ 6.4 Convert a hexadecimal number to unpacked BCD numbers 85

➢ 6.5 BCD addition between two BCD numbers 88

➢ 6.6 Convert hexadecimal number to ASCII numbers 89

➢ 6.7 Convert hexadecimal number to gray code 91

➢ 6.8 Convert gray code to hexadecimal number 93

7. Programs on Look up Table 97 – 99

➢ 7.1 Determine the square of a number using look up table 97

8. Programs on String Manipulation 100 - 118

➢ 8.1 Reverse a string 101

➢ 8.2 Check whether a string is palindrome or not 103

➢ 8.3 Concatenate two strings 106

➢ 8.4 Check whether a string contains another sub-string or not 108

➢ 8.5 Insertion of a string into another string at a specific position 116

9.
Details of 8255 peripheral in 8085 trainer kit
Interfacing programs of 8255 in 8085 trainer kit

119 – 133

➢ 9.1 Blink a set of LEDs with a time delay using 8255 PPI in 8085
Trainer Kit

127

➢ 9.2 Display a single digit BCD number on a 7-segment display using
 8255 PPI in 8085 Trainer Kit

130

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Contents of 8051 Microcontroller

10. Familiarization with 8051 Simulator 134 – 143

➢ 10.1 Installation of Keil UVision 135

➢ 10.2 How to use Keil UVision 136

➢ 10.3 Procedure to write 8051 assembly language program in Keil 136

➢ 10.4 Procedure to build/ rebuild 8051 project in Keil UVision 139

➢ 10.5 Procedure to execute 8051 program using Keil UVision 140

➢ 10.6 Procedure to store data inside RAM using Keil UVision 141

11. Procedure to burn 8051 microcontroller 144 – 150

➢ 11.1 Hardware description of USBASP programmer 144

➢ 11.2 Software description of ProgISP 147

➢ 11.3 Procedure to burn hex code using ProgISP 148

12. Programs on Arithmetic and Logical Operations 151 – 169

➢ 12.1 Addition of two 8-bit numbers 151

➢ 12.2 Addition of ten 8-bit numbers 153

➢ 12.3 Addition of two 64-bit numbers 155

➢ 12.4 Subtraction of two 64-bit numbers 159

➢ 12.5 Algebraic sum of two 8-bit numbers 163

➢ 12.6 Multiplication of two 8-bit numbers 167

➢ 12.7 Division of two 8-bit numbers 168

13. Programs on Data Transfer and Data Separation 170 – 179

➢ 13.1 Transfer a block of data in forward direction without overlapping 170

➢ 13.2 Transfer a block of data in forward direction with overlapping 171

➢ 13.3 Transfer a block of data in reverse direction without overlapping 173

➢ 13.4 Separation of positive and negative numbers 174

➢ 13.5 Separation of odd and even numbers 177

14. Programs on Searching and Sorting 180 - 190

➢ 14.1 Find the largest and smallest number from a set of numbers 180

➢ 14.2 Find the number of ‘DD’ from a list of numbers 182

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Contents of 8051 Microcontroller

➢ 14.3 Arrange a set of numbers in ascending order using bubble sort 184

➢ 14.4 Merge two sorted list of numbers into a third sorted list 185

15. Programs on Data Conversion 191 – 212

➢ 15.1 Convert a 2-digit packed BCD to two unpacked BCD numbers 191

➢ 15.2 Convert two unpacked BCD numbers to a 2-digit packed BCD 193

➢ 15.3 Convert a 2-digit packed BCD number to hexadecimal number 194

➢ 15.4 Convert a hexadecimal number to unpacked BCD numbers 196

➢ 15.5 Convert hexadecimal number to ASCII numbers 199

➢ 15.6 Convert ASCII numbers to hexadecimal number 202

➢ 15.7 Convert hexadecimal number to gray code 204

➢ 15.8 Convert gray code to hexadecimal number 205

➢ 15.9 BCD addition between two 8-bit BCD numbers 209

➢ 15.10 BCD addition between two 32-bit BCD numbers 210

16. Programs on Look up Table 213 - 215

➢ 16.1 Determine the square of a number using look up table 213

17. Programs on String Manipulation 213 - 230

➢ 17.1 Reverse a string 213

➢ 17.2 Check whether a string is palindrome or not 218

➢ 17.3 Check whether a string contains another sub-string or not 220

➢ 17.4 Insertion of a string into another string at a specific position 228

18. Programs of Interfacing with LEDs 231 – 243

➢ 18.1 Blink a set of 8 LEDs connected to port P2 of 8051 231

➢ 18.2 Blink an LED connected to P2.0 of port P2 of 8051 242

19. Programs on reading input switch state 244 – 248

➢ 19.1 Reading input switches connected at port P1 of 8051 and
generate different blinking patterns at port P2 accordingly

244

20. Programs of 7 segment display interfacing 249 - 256

➢ 20.1 Implementing a Mod-N counter with the help of 7 segment
display, where the maximum value of N can be 256.

249

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

Appendix

A. Index Sheet A1

B. Coding Sheet B1

C. Sample Lab Assessment Sheet C1

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

SYLLABUS

1) Familiarization with 8085 & 8051simulator on PC.

2) Study of prewritten programs using basic instruction set (data transfer, Load/ Store,

Arithmetic, Logical) on the KIT. Assignment based on above.

3) Programming using kit and simulator for:

i. Table look up

ii. Copying a block of memory

iii. Shifting a block of memory

iv. Packing and unpacking of BCD numbers

v. Addition of BCD numbers

vi. Binary to ASCII conversion

vii. String Matching, Multiplication using shift and add method and Booth’s

 Algorithm.

4) Program using subroutine calls and IN/OUT instructions using 8255 PPI on the

trainer kit e.g. subroutine for delay, reading switch state and glowing LEDs

accordingly.

5) Study of timing diagram of an instruction on oscilloscope.

6) Interfacing of 8255: Keyboard and Multi-digit Display with multiplexing using

8255

7) Study of 8051 Micro controller kit and writing programs as mentioned in S/L3.

Write programs to interface of Keyboard, DAC and ADC using the kit.

8) Serial communication between two trainer kits.

(i)

__

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1. Familiarization with 8085 simulator
A simulator is an application that mimics the environment and the operation of a practical
system, providing the result without any test on that system. The advantages and disadvantages
of a simulator are given below.

Less Financial Risk: Simulation is less expensive than real life experimentation. The potential
costs of testing theories of real world systems can include expenditure of wastage of materials,
cost of replacement of non-functioning parts etc. Due to this reason simulation allows you to test
theories and avoid costly mistakes in real life.

Exact Repeated Testing: A simulation allows you to test different theories and innovations time
after time against the exact same circumstances. This means you can thoroughly test and
compare different ideas without deviation.

Examine Long-Term Impacts: A simulation can be created to let you see into the future by
accurately modeling the impact of years of use in just a few seconds. This lets you see both short
and long-term impacts so you can confidently make informed investment decisions which can
provide benefits in the future.

Assess Random Events: A simulation can also be used to assess random events such as an
unexpected events.

Test Non-Standard Distributions: A simulation can take account of changing and non-standard
distributions, rather than having to repeat only set parameters. By taking such changing
parameters into account, a simulation can more accurately mimic the real world.

Security and safety: Simulation also provides security and safety to a novice user in a complex
system.

Limitations: Most of the time simulation can not provide accurate result of a large and
complicated system. After testing on simulator when it is experimented on the actual physical
system, there are some deviation or error compared to the real time results of the system. Due to
this reason, simulations have limitations when it is realized in real-world situations.

8085 simulator is used to simulate mainly the assembly language programs on a PC and also
makes it easy to test the same program already executed in simulator on the 8085 Kit. In this
laboratory Jubin’s 8085 Simulator is used to test the programs of 8085 microprocessor. It is a
Java based application which comes with .jar file extension. This software is compatible for all
operating systems like Windows, Linux and Mac. For any operating system Java Run-time
Environment (JRE) must be installed to run this simulator. After installing JRE into the system,
the application can be executed only by double-clicking on it. Therefore this simulator is not
required to be installed in the system.

Department of Electronics & Communication Engineering

8085 1

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1.1 Installation of Jubin’s 8085 simulator

Installation on Windows:
Step1 – Download Java greater than version 6.0 for Windows.
Step2 – Install Java in Windows.
Step3 – Copy the Jubin’s 8085 Simulator with .jar file extension.
Step4 – Double click on .jar file to open and run the simulator.
Installation on Ubuntu:
Step1 – Install Java using the following commands:

$ sudo apt install default-jre
$ sudo apt install default-jdk

Step2 – Copy the Jubin’s 8085 Simulator with .jar file extension into a directory.
Step3 – Double click on .jar file to open and run the simulator.

1.2 How to Use: The screenshots of Jubin’s 8085 Simulator are shown in Fig-1.1, Fig-1.2 and
Fig-1.3 respectively.

Fig-1.1: Editor and Registers Windows of Jubin’ 8085 Simulator

Department of Electronics & Communication Engineering

8085 2

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

Fig-1. 2 : Memory Window of Jubin’ 8085 Simulator

Fig-1. 3 : I/O Window of Jubin’ 8085 Simulator

Department of Electronics & Communication Engineering

8085 3

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

In the white space of Editor window the assembly language program of 8085 microprocessor is
written. The status of various Registers is displayed in Registers Window at the right side of the
Editor Window. The contents of the memory locations with their addresses are shown in the
Memory Window and the status of I/O devices with their 8-bit addresses (IO mapped IO) is
reflected on the I/O Window of the simulator.

1.3 Procedure to write a program:

➢ Every program in Jubin’s 8085 simulator should be started with the assembler directive “#ORG”
followed by the starting address of the program. In our laboratory it is better to start the program
from any address beyond 8000H, because in 8085 Kit does not support to load a program below
8000H as this portion of memory is reserved for BIOS programming in the 8085 Kit. For
example - #ORG 8000H will load the 8085 program starting from memory location 8000H.

#ORG Starting Address of Program

➢ The next line after “#ORG” should include “#BEGIN” followed by the same starting address
mentioned after “#ORG”. This directive compiles the program from the address mentioned after
“#BEGIN”. Normally we should compile the programming code from the starting address, since
the addresses after “#ORG” and “#BEGIN” should be same in case of this simulator.

#BEGIN Starting Address of Program

➢ Programming code should be placed after the #BEGIN and should be terminated by the
instruction HLT.

➢ Comment inside program: To give a comment inside the program, the comment line must be
preceded by ‘//’. The simulator excludes these comment lines during debug. Giving comment in
the program is a good practice to specify explanation of the program. This practice helps the
programmer to recapitulate the logic of a big complicated program in future.

➢ Storing Data inside Memory: To store the data inside the memory prior to the execution of the
program the following assembler directives should be used.

#ORG Address of the Memory from where
data can be stored consecutively

#DB Data1, Data2, Data3, Data4, …………….

DB (Data Byte) is a directive which stores all the 8-bit data (Data1, Data2, Data3,…..)
consecutively starting from the address specified by “#ORG”. This simulator can not store 16-bit
data at a time in the two successive memory addresses by using any assembler directive.

#ORG 8050
#DB 02H, FFH, CDH, 32H, DDH

Department of Electronics & Communication Engineering

8085 4

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

In the above example the simulator will load five 8-bit data (02H, FFH, CDH, 32H, DDH)
consecutively starting from memory location 8050H.

The above mentioned task can be done also directly using the Memory Window of the simulator
as shown in Fig-1.2.
Step1 - Open the Memory Window by clicking the Memory Tab.
Step2 - Select the option “Store directly to specified memory location”.
Step3 – Click on the cell under Memory Address and enter the 16-bit address to store data.
Step4 – Press the Tab button in the Keyboard which will select the cell under Value.
Step5 – Enter 8-bit data and press Tab button once again. This will select the next memory
address.
Step6 – Repeat from Step3 to store multiple data in consecutive addresses.

➢ As the option “Show only loaded memory location” are selected by default, this simulator only
shows the content of the memory addresses which are used to store program code and data of
the program input and output. It does not show entire memory locations. To show this select the
option “Show entire memory content”.

➢ Storing Data in I/O Address: The range of I/O addresses under the Tab “Devices” is 00H – F0H
for this software as shown in Fig-1.3. Hence any I/O location can be accessed either Input or
Output data. When a particular location is used as input, the 8-bit data should be placed into that
location by left-clicking on it and the data sent as output will be reflected on the particular output
location automatically.

➢ The content of any register can not be altered directly in this simulator. The change of the
contents of registered can be viewed only in this simulator.

➢ Syntax Error Checking: After completion of the program writing “Autocorrect” button below
the Editor Window should be clicked to align the program properly and to check any syntax error
in the program code.

➢ Assemble Program: Now click the “Assemble” button which shows a green window where
memory addresses of the program code, Label name, mnemonics, Hex codes (Opcodes and
Operands), Instruction length, no. of Machine cycles and no. of T-states are presented in a
tabular format. This view gives every detail of the program code.

Note: Jubin’s 8085 Simulator is not case-sensitive i.e. the program code may be written either in
block letters or in small letters.

Department of Electronics & Communication Engineering

8085 5

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1.4 Procedure to save/ load a program:

➢ After writing an assembly language program it should be saved by clicking the option “Save
Assembly Language Code” under File menu. During saving the file must be saved with a file
extension .asm.

➢ An existing program saved in an asm file can be loaded in the simulator using the option “Load
Assembly Language Code” under File menu.

1.5 Procedure to execute a program:

➢ Run Entire Program: Click the button “Run all at a time” at the bottom of the Assembler
window to execute the whole program at a time. After the execution of the program the desired
output can be checked in the Registers under Registers Window or in the memory locations
under the Memory Window or in the I/O locations under the Devices window as per the
program.

➢ Run Step by Step: If the button “Step By Step” is clicked, only one instruction with every click
will be executed. This mode of operation is called Single Line Execution. After execution of an
instruction the register or memory location or I/O location will be updated as per the operation of
that particular instruction. This option is very useful to detect any logical error inside the
program.

The screenshots of Jubin’s 8085 Simulator with a program written in Editor Window is shown in
Fig-1.4 followed by the same program displayed on Assembler Window in Fig-1.5.

Fig-1.4: Editor window with program code

Department of Electronics & Communication Engineering

8085 6

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

F ig-1.5: Assembler window

Department of Electronics & Communication Engineering

8085 7

College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

2. Familiarization with 8085 Trainer Kit
ALS SDA 85 is a 8085 microprocessor Trainer Kit to dump the hex codes of 8085 program in
the memory, execute the dumped code and show the result on 7 segment display board connected
to this kit. The specification of this Kit is given below.

1) Operating frequency of the microprocessor 8085 inside this kit is 3.072 MHz.
2) Maximum size of memory 64 KB (32 KB EEPROM and 32 KB RAM). This kit is supplied

with 16 KB EEPROM and 8 KB RAM with battery backup.
3) I/O Parallel: 48 IO lines using two 8255.
4) IO Serial: 0ne RS232 compatible interface
5) Timer: Three 16 bit counter timer using 8253.
6) Keyboard: Consisting of 28 numbers of computer grade keys.
7) Display: Six numbers of seven segment displays.
8) BUS Signals: All Address, Data and Control signals are terminated in 50 pin berg stick.
9) Monitor Software: 16KB of powerful monitor software with keyboard and serial modes.
10) Interrupt Controller: 8 interrupts of 8259 interrupt controller IC are terminated in berg stick.

There are two models of 8085 Trainer Kit in the laboratory – 1) SDA85H and 2) SDA85M.
The top views of both the trainer kits are given in Fig-2.1.

Fig-2.1(a): View of SDA 85H Trainer Kit Fig-2.1(b): View of SDA85M Trainer Kit

Department of Electronics & Communication Engineering

8085 8

College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

2.1 Functions of different keys of 8085 Trainer Kit

Key Function

RESET It resets the system

SUBST MEM It is used to display the content of memory location and modify the
content of that memory location

EXAM REG It is used to display the content of particular register

NEXT It is used to show the content of a particular memory location for
SUBST MEM and the content of any register for EXAM REG.

It is also used to show the content of the next memory location or the
content of the next register of 8085.

PREV It is also used to show the content of the previous memory address or the
content of the previous register of 8085.

GO It is used to provide the starting address of the program for its execution.

EXEC It is used to run the entire program at a time after specifying the starting
address of the program using GO key.

SINGLE STEP It is used to execute the program in single step mode.

BLOCK MOVE It allows user to move a block of memory to another memory space.

VECT INTR It provides hardware interrupt (RST 7.5) via keyboard

INS It inserts the part of the program or data with relocation, by one or more
bytes

DEL It deletes the part of program or data, with relocation by one or more
bytes.

After the successful execution of a program in Jubin’s 8085 Simulator, the same program may be
tested on this Kit. For this purpose all the Hex codes are required to dump them into the memory of
the 8085 Kit. Jubin’s 8085 Simulator provides these Hex codes. The Hex codes are dumped into the
memory of the Kit and executed them using the following procedure.

2.2 Procedure to load program code:

➢ Press “RESET” key to reset the system. After resetting “Sda 85” text will appear on the display.

➢ Press the key “SUBST MEM” to load the program code.

➢ Enter the starting address of the program and press “NEXT” key.

Department of Electronics & Communication Engineering

8085 9

College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

➢ Now the content of the memory address specified will be displayed. Enter the correct Hex code
with the help of keyboard and press “NEXT” button. This will replace the previous 8-bit data by
the present 8-bit data. It is important to mention that until the “NEXT” key is press the new data
will not be saved into the specified memory location.

➢ After pressing “NEXT” it will show the content of the next memory location. Again replace it
with new data and press “NEXT”.

➢ This process will continue until the end of the program. At the end of the program enter the hex
code “EF” which is the opcode of RST5 software interrupt. This interrupt returns the program
control again to its monitor program.

➢ Sometimes if it is required to change the data of the previous memory location, press “PREV”
key in the kit.

➢ To check whether the program code is loaded or not, press “SUBST MEM” to give the starting
address of the program and continue to press “NEXT” button until the end of the program to
verify every hex code.

➢ If any input data are available for the program, insert the input data to desired memory location
following the above mentioned process.

2.3 Procedure to execute program:

➢ To run the program loaded into the memory, first press “RESET” to reset the system.

➢ Now press “GO” button and provide the starting address of the program.

➢ Lastly press “EXEC” key to run the program. After the successful execution of the program the
text “Sda 85” appears on the display of the Kit once again.

2.4 Procedure to show the result:

➢ After the successful execution of the program, if the result is stored in memory, press the
“SUBST MEM” button, enter the memory address where the result is stored and press “NEXT”
to display the result.

➢ If the result is stored in any register, press “EXAM REG”, enter the name of the register by
pressing the designated alphabet from the keyboard and press “NEXT” to show the content of
that register which is nothing but a result of the program. For example – to get the content of
register A or accumulator press “A” key, for register B, press “B”, for register C, press “C” etc.

Department of Electronics & Communication Engineering

8085 10

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

3. Programs on Arithmetic and Logical Operations

3.1: Write a program to add two 8-bit binary numbers which are stored at the memory locations
8050 and 8051 and also store the result of addition into DE register pair.

Method 1: In case of addition of two 8-bit binary numbers, the maximum result will be 1FE when
both of the numbers are maximum i.e. FF (FF + FF = 01FE). Hence it is clear that we need an extra
bit to store the result. That means a single 8-bit general purpose register (A, B, C, D, E, H, L) of
8085 microprocessor is not sufficient to store the result of two 8-bit binary numbers addition. It
needs atleast two 8-bit registers to store the result. That's why register pair DE has been used in the
above program to store the result. The flowchart of the above program is given below in Fig-3.1.

F ig- 3 .1: Flowchart of the program to add two 8-bit numbers and store the result in DE register pair

__
Department of Electronics & Communication Engineering

8085 11

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.1 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D, 00 16 00 2 7

2 8002 LXI H, 8050 21 50 80 3 10

3 8005 MOV A, M 7E 1 7

4 8006 INX H 23 1 6

5 8007 ADD M 86 1 7

6 8008 JNC No_carry D2 0C 80 3 10 (True) / 7 (False)

7 800B INR D 14 1 4

8 800C No_carry MOV E, A 5F 1 4

9 800D HLT 76 1 5

TOTAL = 14

Method 2: In this technique, the conditional jump instruction “JNC XXXX” is not used. Instead of
that, the instruction “ADC R” is used. If the content of Accumulator is made zero and the
instruction “ADC A” is used, the carry flag will be stored inside the Accumulator i.e. the higher
byte of the result of two 8-bit numbers addition will be stored inside the Accumulator. The
flowchart in this technique is shown in Fig-3.2.

F ig- 3 . 2 : Flowchart of the program to add two 8-bit numbers and store the result in DE register pair

__
Department of Electronics & Communication Engineering

8085 12

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.1 (Method 2):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H, 8050 21 50 80 3 10

2 8003 MOV A, M 7E 1 7

3 8004 INX H 23 1 6

4 8005 ADD M 86 1 7

5 8006 MOV E, A 5F 1 4

6 8007 MVI A, 00 3E 00 2 7

7 8009 ADC A 8F 1 4

8 800A MOV D, A 57 1 4

9 800B HLT 76 1 5

TOTAL = 12

Result of Program3.1:
SET1 ►
Input

Mem. Address Content Remarks

8050 0A No1

8051 DD No2

SET2 ►
Input

Mem. Address Content Remarks

8050 FF No1

8051 FE No2

Output

D → 00 → Higher Byte of Result
E → E7 → Lower Byte of Result

Output

D → 01 → Higher Byte of Result
E → FD → Lower Byte of Result

Comparisons between Method 1 and Method2

➢ Now if we compare two methods described above to add two 8-bit numbers, we can observe
that the total size of the program in method 2 (12 Bytes) is less than the total size of the first
program (14 Bytes). That means in case of the second method, the program will occupy less
memory space compared to the first method.

__
Department of Electronics & Communication Engineering

8085 13

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Moreover, execution time in the second method is less than that of the first method. Therefore we
can conclude lastly that the second method is better than the first method.

3.2: Write a program to add ten 8-bit binary numbers which are stored at the memory locations
starting from 8050 to 8059 and also store the result of addition starting from 805A onward.

It is to determine first, what will be the maximum value of the result of ten 8-bit numbers Addition
so that it can be determined that how many bytes is required to store the result. Naturally the result
of addition will be maximum, if all the ten 8-bit numbers having their maximum value i.e FF.
Hence FF + FF + FF + FF + FF + FF + FF + FF + FF + FF = 9F6 i.e 09F6

Therefore it is clear that atleast 2 bytes are required to store the result of ten 8-bit numbers addition.
We have to use two consecutive memory locations – one 805A and another 805B for storing the
lower byte and higher byte of the result respectively.

The concept of this program is that addition should be performed repeatedly for n times for addition
of n no. of 8-bit numbers and a register is to be taken for counting the no of carries occurred for
these multiple no. of addition. In this case register D has been taken to hold how many times the
carry occurred during 9 times addition of ten 8-bit numbers. Each time if a carry occurs the content
of register D is to be incremented by one. The ten 8-bit numbers are stored in consecutive memory
locations starting from 8050 to 8059 and the lower byte and the higher byte of the result will be
stored at address 805A and 805B respectively, which is shown pictorially in the following Fig-3.3.

Addresses Contents

8050 No 1

8051 No 2

8052 No 3

8053 No 4

8054 No 5

8055 No 6

8056 No7

8057 No 8

8058 No 9

8059 No 10

805A Lower Byte of Result

805B Higher Byte of Result

Fig-3.3: Ten 8-bit numbers and the result of addition are stored consecutively from 8050

__
Department of Electronics & Communication Engineering

8085 14

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 1: The flowchart of the above mentioned program is given below in Fig-3.4.

Fig-3.4: Flowchart of the program to add ten 8-bit numbers stored consecutively

Assembly Language Program 3.2 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D, 00 16 00 2 7

2 8002 MVI C, 09 0E 09 2 7

3 8004 LXI H, 8050 21 50 80 3 10

4 8007 MOV A, M 7E 1 7

5 8008 Repeat INX H 23 1 6

6 8009 ADD M 86 1 7

7 800A JNC
No_carry

D2 0E 80 3 10 (True) / 7
(False)

8 800D INR D 14 1 4

9 800E No_carry DCR C 0D 1 4

10 800F JNZ Repeat C2 08 80 3 10 (true) / 7

__
Department of Electronics & Communication Engineering

8085 15

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

(False)

11 8012 INX H 23 1 6

12 8013 MOV M, A 77 1 7

13 8014 INX H 23 1 6

14 8015 MOV M, D 72 1 7

15 8016 HLT 76 1 5

TOTAL = 23

In the above program, it is being seen that the counter register C is initialized to 09, beacuse in this
case ten 8-bit numbers are being added. This implies that in case of the addition of N no. of 8-bit
numbers, the counter register should be initialized to a value (N – 1), if the above procedure is
followed. But if we follow the following process, then we have to initialize the counter register with
a value which is equal to the no. of 8-bit numbers which are being added. This procedure is given
using the assembly language program below.

Assembly Language Program 3.2 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D, 00 16 00 2 7

2 8002 MVI C, 0A 0E 0A 2 7

3 8004 LXI H, 8050 21 50 80 3 10

4 8007 XRA A AF 1 4

5 8008 Repeat ADD M 86 1 7

6 8009 JNC No_carry D2 0D 80 3 10 (True) / 7 (False)

7 800C INR D 14 1 4

8 800D No_carry INX H 23 1 6

9 800E DCR C 0D 1 4

10 800F JNZ Repeat C2 08 80 3 10 (true) / 7 (False)

11 8012 MOV M, A 77 1 7

12 8013 INX H 23 1 6

13 8014 MOV M, D 72 1 7

14 8015 HLT 76 1 5

TOTAL = 22

__
Department of Electronics & Communication Engineering

8085 16

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

So it is observed in the above program, the total execution time is 430 T-states which was only 401
T-states in the previous program. Hence this above program takes a very large time to complete in
comparison with that of the previous program. That's why this above program may be rejected in
comparison to the first program, although this current program takes less memory than the first
program.

Method 2: In this method, the same technique like method 1 is applied, only the exception is that
the instruction “JNC XXXX” is not used and instead of that the instruction “ADC A” is used. From
the assembly language program in this method 2 it is clear that if we compare the first program in
method 1 and this program in method 2, the execution time is very much less in the first program in
method 1. That's why the first program is the best case to add ten 8-bit numbers.

Assembly Language Program 3.2 (Method 2):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D, 00 16 00 2 7

2 8002 MVI C, 09 0E 09 2 7

3 8004 LXI H, 8050 21 50 80 3 10

4 8007 MOV B, M 46 1 7

5 8008 Repeat INX H 23 1 6

6 8009 MOV A, M 7E 1 7

7 800A ADD B 80 1 4

8 800B MOV B, A 47 1 4

9 800C MVI A, 00 3E 2 7

10 800E ADC D 8A 1 4

11 800F MOV D, A 57 1 4

12 8010 DCR C 0D 1 4

13 8011 JNZ Repeat C2 3 10 (True) / 7
(False)

14 8014 INX H 23 1 6

15 8015 MOV M, B 70 1 7

16 8016 INX H 23 1 6

17 8017 MOV M, D 72 1 7

18 8018 HLT 76 1 5

TOTAL = 25

__
Department of Electronics & Communication Engineering

8085 17

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Result of Program3.2:
SET1 ►
Input

Mem. Address Content Remarks

8050 05 No1

8051 0D No2

8052 DD No3

8053 AA No4

8054 12 No5

8055 32 No6

8056 01 No7

8057 0A No8

8058 1F No9

8059 0A No10

SET2 ►
Input

Mem. Address Content Remarks

8050 05 No1

8051 06 No2

8052 07 No3

8053 08 No4

8054 09 No5

8055 0A No6

8056 0B No7

8057 0C No8

8058 0D No9

8059 0E No10

Output

Mem. Address Content Remarks

805A 11 Lower Byte of Result

805B 02 Higher Byte of Result

Output

Mem. Address Content Remarks

805A 5F Lower Byte of Result

805B 00 Higher Byte of Result

__
Department of Electronics & Communication Engineering

8085 18

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

3.3: Write a program to add two 16-bit binary numbers which are stored at the memory locations
starting from 8050 to 8053 i.e. 1st number at 8050 and 8051 and 2nd number at 8052 and 8053.
Store the result of the addition starting from memory location 8054 onward.

In this program, we are performing 16-bit addition. Therefore maximum size of the result of 16-bit
addition must be determined. Maximum value of the result for 16-bit addition will be 1FFFE, when
both of the 16-bit numbers are maximum in value i.e. FFFF. Hence we need atleast 3 bytes of
memory to store the result. In this case lower byte, higher byte and carry byte of the result will be
stored at addresses 8054, 8055 and 8056 respectively. The total memory mapping of the above
mentioned case is shown in Fig-3.5.

Addresses Contents

8050 Lower byte of No 1

8051 Higher byte of No 1

8052 Lower byte of No 2

8053 Higher byte of No 2

8054 Lower byte of result

8055 Higher byte of result

8056 Carry byte of result

Fig-3.5: Two 16-bit numbers and the addition of them are stored consecutively from 8050

Now the above program can be done in two methods – in the first method, it can be done by using
the instruction “DAD Reg_Pair” and in the second method, it can be done using the instruction
“ADC M”. Although the first method is very simple and takes less memory and execution time, the
second method must be performed. Because, whenever we perform more than 16-bit addition like
64-bit addition, 128-bit addition, the second method becomes simpler than the first method.

__
Department of Electronics & Communication Engineering

8085 19

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 1: The flowchart of this program in first method is shown in Fig-3.6 below.

Fig-3.6: Flowchart of two 16-bit numbers addition using DAD instruction

Assembly Language Program 3.3 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 XRA A AF 1 4

2 8001 LHLD 8050 2A 50 80 3 16

3 8004 XCHG EB 1 4

4 8005 LHLD 8052 2A 52 80 3 16

5 8008 DAD D 19 1 10

6 8009 ADC A 87 1 4

7 800A SHLD 8054 22 54 80 3 16

8 800D STA 8056 32 56 80 3 13

9 8010 HLT 76 1 5

TOTAL = 17

__
Department of Electronics & Communication Engineering

8085 20

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 2: In this method, for 16-bit addition the instruction “ADC M” is used in place of “DAD
Reg_Pair”. If we separate a 16-bit number into two bytes, one byte becomes lower byte and other
becomes higher byte. So whenever addition is performed between two 16-bit numbers, first addition
occurs between two lower bytes of two 16-bit numbers and the next addition is done between two
higher bytes of the same two 16-bit numbers along with the carry (if occurs) propagated from the
lower byte. It will be clear, if we take an example. Suppose the two 16-bit numbers which are being
added, are B18C and FAF9, as shown below.

F ig- 3.7 : Addition between two 16-bit numbers where carry propagates from lower to higher byte

It is now obvious that whenever lower bytes of two 16-bit numbers are added, there is no chance of
occuring carry from the previous stage, but during the addition of higher bytes carry may occur.
Thet's why before adding lower bytes using ADC instruction, the carry flag must be made zero. The
flowchart of addition of two 16-bit numbers using ADC instruction is shown below in Fig-3.8.

Fig-3.8: Flowchart of two 16-bit numbers addition using ADC instruction

__
Department of Electronics & Communication Engineering

8085 21

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.3 (Method 2):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI B, 8050 01 50 80 3 10

2 8004 LXI H, 8052 21 52 80 3 10

3 8007 LXI D, 8054 11 54 80 3 10

4 800A LDAX B 0A 1 7

5 800B ADD M 86 1 7

6 800C STAX D 12 1 7

7 800D INX B 03 1 6

8 800E INX H 23 1 6

9 800F INX D 13 1 6

10 8010 LDAX B 0A 1 7

11 8011 ADC M 8E 1 7

12 8012 STAX D 12 1 7

13 8013 INX D 13 1 6

14 8014 MVI A, 00 3E 00 2 7

15 8016 ADC A 8F 1 4

16 8017 STAX D 12 1 7

17 8018 HLT 76 1 5

TOTAL = 24

Result of Program3.3:
SET1 ►
Input

Mem. Address Content Remarks

8050 FF Lower byte of No 1

8051 FE Higher byte of No 1

8052 FC Lower byte of No 2

8053 FD Higher byte of No 2

Output

Mem. Address Content Remarks

8054 FB Lower Byte of Result

8055 FC Higher Byte of Result

8056 01 Carry Byte of Result

__
Department of Electronics & Communication Engineering

8085 22

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 ►
Input

Mem. Address Content Remarks

8050 10 Lower byte of No 1

8051 20 Higher byte of No 1

8052 30 Lower byte of No 2

8053 40 Higher byte of No 2

Output

Mem. Address Content Remarks

8054 40 Lower Byte of Result

8055 60 Higher Byte of Result

8056 00 Carry Byte of Result

3.4: Write a program to add two 64-bit binary numbers which are stored at the memory locations
starting from 8050 onwards and the memory locations starting from 8060 onwards. Store the
result of the addition starting from memory location 8070 onwards.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 8050 to 8057 and the second number starts
from 8060 to 8067. Moreover, it takes atleast 9 consecutive bytes to store the result of addition
starting from 8070 to 8078. The memory mapping for storing the two 64-bit numbers and their
result of addition, is shown in Fig-3.9.

 1St Number 2nd Number
Address Content Address Content

8050 Byte1 8060 Byte1

8051 Byte2 8061 Byte2

8052 Byte3 8062 Byte3

8053 Byte4 8063 Byte4

8054 Byte5 8064 Byte5

8055 Byte6 8065 Byte6

8056 Byte7 8066 Byte7

8057 Byte8 8067 Byte8

__
Department of Electronics & Communication Engineering

8085 23

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Result of Addition
Address Content

8070 Byte1

8071 Byte2

8072 Byte3

8073 Byte4

8074 Byte5

8075 Byte6

8076 Byte7

8077 Byte8

8078 Byte9

Fig-3.9: Memory mapping of two 64-bit numbers and their result of addition

During the addition of two 8-byte numbers, addition of each bytes from two numbers are performed
starting from the lowesr byte to highest byte successively i.e. addition is done first in between
Byte1 of the two numbers, then between Byte2 and so on. If carry occurs after the addition of two
Byte1 of two numbers, that carry will be propagated into the addition of two Byte2 of the two
numbers. Similarly if there is carry during the addition of two Byte2, that carry will be propagated
into the third bytes of the two numbers. This will go on untill highest byte i.e. Byte8 addition done.
In this case, one thing is important to consider that there is no chance of occuring any carry from
the previous stage during the addition of lowest bytes i.e. Byte1. Hence before using ADC
instruction for adding Byte1 of the two numbers, the carry flag must be reset. The flowchart of this
program is shown in Fig-3.10. In this program addition will be performed for 8 times. Therefore a
register should be taken as counter. But the problem here is the shortage of general purpose
registers, because all the registers except Accumulator have been used to point the starting
addresses of two numbers and the starting address of the destination memory block for storing the
result of addition such as – BC register pair to point the addresses of 1st number, HL register pair for
2nd number and DE register pair for destination block of result. Therefore a memory location like
8080 will be reserved to store the counting value for each iteration.

__
Department of Electronics & Communication Engineering

8085 24

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Fig-3.10: Flowchart of addition between two 64-bit numbers

Assembly Language Program 3.4:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI A, 08 3E 08 2 7

2 8002 STA 8080 32 80 80 3 13

3 8005 LXI B, 8050 01 50 80 3 10

4 8008 LXI H, 8060 21 60 80 3 10

5 800B LXI D, 8070 11 70 80 3 10

6 800E XRA A AF 1 4

7 800F Repeat LDAX B 0A 1 7

8 8010 ADC M 8E 1 7

9 8011 STAX D 12 1 7

10 8012 INX B 03 1 6

11 8013 INX H 23 1 6

__
Department of Electronics & Communication Engineering

8085 25

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

12 8014 INX D 13 1 6

13 8015 LDA 8080 3A 80 80 3 13

14 8018 DCR A 3D 1 4

15 8019 STA 8080 32 80 80 3 13

16 801C JNZ Repeat C2 0F 80 3 10 (True) /
7 (False)

17 801F ADC A 8F 1 4

18 8020 STAX D 12 1 7

19 8021 HLT 76 1 5

TOTAL = 34

In the above program, before starting the loop, an instruction “XRA A” is used. The reason behind
it that for the addition of lowest bytes for first time, the carry flag must be reset. That's why the
instruction “XRA A” is used to make the carry flag to be reset or zero. We can also use two
instruction consecutively in place of the instruction “XRA A”. The instructions are - “STC” which
will set the carry flag and then “CMC” which will invert the carry flag. So if we use these two
instructions consecutively one after another, then the carry flag will be zero ultimately. But these
two instructions take two bytes of memory whereas the instruction “XRA A” will take only a single
byte of memory to do the same purpose. Therefore it is better to use the instruction “XRA A”.

Result of Program3.4:
SET1 ►
Input
 No1 No2

Addr Content Remarks Addr Content Remarks

8050 88 Byte1 8060 01 Byte1

8051 99 Byte2 8061 02 Byte2

8052 AA Byte3 8062 03 Byte3

8053 BB Byte4 8063 04 Byte4

8054 CC Byte5 8064 05 Byte5

8055 DD Byte6 8065 06 Byte6

8056 EE Byte7 8066 07 Byte7

8057 FF Byte8 8067 08 Byte8

 Output

Result

Addr Content Remarks

8070 89 Byte1

8071 9B Byte2

8072 AD Byte3

8073 BF Byte4

8074 D1 Byte5

8075 E3 Byte6

8076 F5 Byte7

8077 07 Byte8

8078 01 Byte9

__
Department of Electronics & Communication Engineering

8085 26

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 ►
Input
 No1 No2

Addr Content Remarks Addr Content Remarks

8050 10 Byte1 8060 08 Byte1

8051 20 Byte2 8061 07 Byte2

8052 30 Byte3 8062 06 Byte3

8053 40 Byte4 8063 05 Byte4

8054 50 Byte5 8064 04 Byte5

8055 60 Byte6 8065 03 Byte6

8056 70 Byte7 8066 02 Byte7

8057 80 Byte8 8067 01 Byte8

 Output

Result

Addr Content Remarks

8070 18 Byte1

8071 27 Byte2

8072 36 Byte3

8073 45 Byte4

8074 54 Byte5

8075 63 Byte6

8076 72 Byte7

8077 81 Byte8

8078 00 Byte9

3.5: Write a program to subtract two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the result of subtraction at the memory location 8052 in
signed-magnitude form. Consider the content of memory location 8051 is subtracted from the
content of memory location 8050.

In this case the result of subtraction will be saved in signed-magnitude format, where the MSB is
treated as the sign bit and the remaining bits represent the magnitude. If MSB is high, then the
number will be treated as negative number and if it is low, then the number will be treated as
positive number. Here the result of two 8-bit numbers subtraction also will be 8-bit long where
MSB is the sign bit and remaining seven bits represent the magnitude of the result.

Suppose the content of 8050 is x and content of 8051 is y. That means the subtraction of (x – y) is
being performed in this program. If x < y the result of the subtraction will be in 2's complement
form and the result has to be 2's complemented and the MSB is made high by performing OR
operation with 1000000 i.e. 80 in Hex to get the signed-magnitude form. We have represented the
result in signed-magnitude form, because it is easily understandable. If x > y, the result is already in
signed-magnitude form. That's why no action is taken in this case. The carry/ borrow flag is set for
x < y and it is reset for x > y. So the status of the carry/ borrow flag is checked in this program to
decide that whether the result of subtraction is positive or negative. Fig-3.11 shows the flowchart of
the program for subtracting two 8-bit numbers.

Limitation: In this method, if the result of subtraction lies between -127 to +127, then this program
works correctly, otherwise it gives erroneous result.

__
Department of Electronics & Communication Engineering

8085 27

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

F ig- 3.11 : Flowchart of the program to subtract two 8-bit numbers

Assembly Language Program 3.5

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H, 8050 21 50 80 3 10

2 8003 MOV A, M 7E 1 7

3 8004 INX H 23 1 6

4 8005 SUB M 96 1 7

5 8006 JNC POSITIVE D2 0D 80 3 10(True)/7 (False)

6 8009 CMA 2F 1 4

7 800A INR A 3C 1 4

__
Department of Electronics & Communication Engineering

8085 28

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

8 800B ORI 80 F6 80 2 7

9 800D POSITIVE INX H 23 1 6

10 800E MOV M,A 77 1 7

11 800F HLT 76 1 5

TOTAL = 16

Result of Program3.5:
SET1 ►
Input

Mem. Address Content Remarks

8050 AA (170) No1 (Minuend)

8051 46 (70) No2 (Subtrahend)

SET2 ►
Input

Mem. Address Content Remarks

8050 46 (70) No1 (Minuend)

8051 AA (170) No2 (Subtrahend)

Output

Mem. Address Content Remarks

8052 64 (100) Positive Result

Output

Mem. Address Content Remarks

8052 E4 (-100) Negative Result

3.6: Write a program to subtract two 16-bit binary numbers which are stored from the memory
location 8050 onwards and 8052 onwards and also store the result of subtraction starting from
the memory location 8054 onwards in signed-magnitude form. Consider the contents of memory
locations 8052 and 8053 are subtracted from the contents of memory locations 8050 and 8051.

In case of subtraction of two 16-bit numbers, four consecutive memory locations are required to
store the 16-bit minuend and 16-bit subtrahend. Therefore in this program the memory addresses
8050 and 8051 are used to store the minuend, where 8050 holds the lower byte and 8051 holds the
higher byte of the minuend. Similarly the memory locations 8052 and 8053 hold the lower byte and
the higher byte of the subtrahend. The result of the subtraction will be obviously 16-bit long and it
takes two consecutive memory locations 8054 and 8055, where 8054 will store the lower byte of the
result and 8055 will store the higher byte of the result. Now the lower byte of the subtrahend will be
subtracted first from the lower byte of the minuend, then the higher byte of the subtrahend will be
subtracted from the higher byte of the minuend taking account of the borrow of the lower byte

__
Department of Electronics & Communication Engineering

8085 29

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

subtraction. If carry flag is set after the higher byte subtraction, it imples that the minuend is less
than the subtrahend and we have to make MSB of the result to be high after taking 2's complement
of the entire 16-bit result to get signed-magnitude form. If carry does not occur, we do not need to
take any action. The flowchart of this program is shown in Fig-3.12.

Limitation: In this method, if the result of subtraction lies between -32767 to +32767, then this
program works correctly, otherwise it gives erroneous result.

Fig-3.12: Flowchart of the subtraction between two 16-bit binary numbers

__
Department of Electronics & Communication Engineering

8085 30

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.6:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LHLD 8050 2A 50 80 3 16

2 8003 XCHG EB 1 4

3 8004 LHLD 8052 2A 52 80 3 16

4 8007 MOV A, E 7B 1 4

5 8008 SUB L 95 1 4

6 8009 MOV L,A 6F 1 4

7 800A MOV A,D 7A 1 4

8 800B SBB H 9C 1 4

9 800C JNC POSITIVE D2 1B 80 3 10 (True) / 7
(False)

10 800F CMA 2F 1 4

11 8010 MOV H,A 67 1 4

12 8011 MOV A,L 7D 1 4

13 8012 CMA 2F 1 4

14 8013 MOV L,A 6F 1 4

15 8014 LXI D,0001 11 01 00 3 10

16 8017 DAD D 19 1 10

17 8018 MOV A,H 7C 1 4

18 8019 ORI 80 F6 80 2 7

19 801B POSITIVE MOV H,A 67 1 4

20 801C SHLD 8054 22 54 80 3 16

21 801F HLT 76 1 5

TOTAL = 32

__
Department of Electronics & Communication Engineering

8085 31

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Result of Program3.6:
SET1 ►
Input

Address Content Remarks

8050 AA Lower Byte of Minuend

8051 46 Higher Byte of Minuend

8052 20 Lower Byte of Subtrahend

8053 10 Higher Byte of Subtrahend

Minuend = 46AAH = 18090
Subtrahend = 1020H = 4128

SET2 ►
Input

Address Content Remarks

8050 20 Lower Byte of Minuend

8051 10 Higher Byte of Minuend

8052 AA Lower Byte of Subtrahend

8053 46 Higher Byte of Subtrahend

Minuend = 1020H = 4128
Subtrahend = 46AAH = 18090

Output

Mem. Address Content Remarks

8054 8A
Positive Result

8055 36

Result = 368AH = 13962

Output

Mem. Address Content Remarks

8054 8A
Negative Result

8055 B6

Result = B68AH = -13962

3.7: Write a program to multiply two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the result of multiplication from the memory location
8052 onwards using successive addition.

Method 1: For multiplication of two 8-bit numbers, the result of the multiplication will be
maximum, if both multiplicant and multiplier will be maximum i.e. multiplicant = FFH and
multiplier = FFH. In this case the result of multiplication will be FE01H which is 16-bit long.
Therefore we need atleast two consecutive memory locations to store the result of multiplaction.
For this reason, the result of the multiplication should be stored at two successive memory locations
8052 and 8053, where 8052 should hold the lower byte and 8053 should hold the higher byte. Here
repeatative addition is utilized to implement the program. For example, suppose multiplicant = 05
and multiplier = 09, that means to get the product we have to perform (00 + 09 + 09 + 09 + 09 + 09)
which implies that multiplicant should be taken as the counter and the addition of multiplier with
itself should be done for several times by using the counter.

__
Department of Electronics & Communication Engineering

8085 32

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Fig-3.13: Flowchart of multiplication of two 8-bit numbers using successive addition

__
Department of Electronics & Communication Engineering

8085 33

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.7 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D,00 16 00 2 7

2 8002 LXI H,8050 21 50 80 3 10

3 8005 MOV C,M 4E 1 7

4 8006 INX H 23 1 6

5 8007 XRA A AF 1 4

6 8008 LOOP ADD M 86 1 7

7 8009 JNC SKIP D2 0D 80 3 10 (True) / 7
(False)

8 800C INR D 14 1 4

9 800D SKIP DCR C 0D 1 4

10 800E JNZ LOOP C2 08 80 3 10 (True) / 7
(False)

11 8011 INX H 23 1 6

12 8012 MOV M,A 77 1 7

13 8013 INX H 23 1 6

14 8014 MOV M,D 72 1 7

15 8015 HLT 76 1 5

TOTAL = 22

__
Department of Electronics & Communication Engineering

8085 34

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 2: For multiplication of two 8-bit numbers, the result of the multiplication will be
maximum, if both multiplicant and multiplier will be maximum i.e. multiplicant = FFH and
multiplier = FFH. In this case the result of multiplication will be FE01H which is 16-bit long.
Therefore we need atleast two consecutive memory locations to store the result of multiplaction.
For this reason, the result of the multiplication should be stored at two successive memory locations
8052 and 8053, where the memory locations 8052 and 8053 will hold the lower byte and the higher
byte of the result. Here repeatative addition is not utilized to implement the program, because it will
take long time to execute the program. That's why the technique of manual multiplication of two
binary numbers is used here. Here the 8-bit multiplier is copied to register B first. Then 8-bit
multiplicand is also copied to register E and register D is initialized to 00H, because the aim is to
store the 16-bit multiplicand or the left shifted pattern of the 16-bit multiplicand inside the register
pair DE. Register pair HL is utilized to store the 16-bit result ultimately and it is initialized to
0000H at the beginning.

The bits of the divisor are searched starting from LSB to MSB one by one. If LSB is found 1, add
the 16-bit multiplicand formed by adding 8 no. of 0 at the MSB side, with the content of register
pair HL and the result is stored again into the same HL pair. If the next bit of the LSB of the
multiplier is 1, the 16-bit multiplicand shifted one position left will be added. This process will
continue upto the MSB of the multiplier. If any bit of the multiplier is found 0, no action is taken
except the multiplicand will be shifted left by one position. In this program, after shifting the
multiplicand left each time and inserting zero from the side of LSB, it will be stored into the DE
register pair. For better understanding let's take an example of 8-bit multiplication.

8-bit Multiplicant (x) = 1110 0010
8-bit Multiplier (y) = 1110 0111

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Multiplicant (x): 1 1 1 0 0 0 1 0

Multiplier (y): 1 1 1 0 0 1 1 1

--

1 1 1 0 0 0 1 0

1 1 1 0 0 0 1 0 0

1 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 0 0 0 0

1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

--

1 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0

__
Department of Electronics & Communication Engineering

8085 35

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

The above mentioned example clearly explains that how the multiplication of two 16-bit numbers
are being done manually. Now the flowchart of this program is given in Fig-3.14.

Fig-3.14: Flowchart of multiplication between two 8-bit numbers

Assembly Language Program 3.7 (Method 2):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV E,M 5E 1 7

3 8004 MVI D,00 16 00 2 7

4 8006 INX H 23 1 6

5 8007 MOV B,M 46 1 7

6 8008 LXI H,0000 21 00 00 3 10

__
Department of Electronics & Communication Engineering

8085 36

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

7 800B LOOP MOV A,B 78 1 4

8 800C STC 37 1 4

9 800D CMC 3F 1 4

10 800E RAR 1F 1 4

11 800F MOV B,A 47 1 4

12 8010 JNC
NOACTION

D2 14 80 3 10 (True) / 7
(False)

13 8013 DAD D 19 1 10

14 8014 NOACTI
ON

MOV A,E 7B 1 4

15 8015 STC 37 1 4

16 8016 CMC 3F 1 4

17 8017 RAL 17 1 4

18 8018 MOV E,A 5F 1 4

19 8019 MOV A,D 7A 1 4

20 801A RAL 17 1 4

21 801B MOV D,A 57 1 4

22 801C XRA A AF 1 4

23 801D ORA B B0 1 4

24 801E JNZ LOOP C2 0B 80 3 10 (True) / 7
(False)

25 8021 SHLD 8052 22 52 80 3 16

26 8024 HLT 76 1 5

TOTAL = 37

Result of Program3.7:
SET1 ►
Input

Mem. Address Content Remarks

8050 FF No1 (Multiplicand)

8051 FC No2 (Multiplier)

Output

Mem. Address Content Remarks

8052 04 Lower Byte of Result

8053 FB Higher Byte of Result

__
Department of Electronics & Communication Engineering

8085 37

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 ►
Input

Mem. Address Content Remarks

8050 99 No1 (Multiplicand)

8051 AA No2 (Multiplier)

Output

Mem. Address Content Remarks

8052 9A Lower Byte of Result

8053 65 Higher Byte of Result

3.8: Write a program to multiply two 16-bit numbers which are stored from 8050 onwards and
8052 onwards, Result should be stored from the memory location 8054 onwards.

For multiplication of two 16-bit numbers, the result of the multiplication will be maximum, if both
multiplicant and multiplier will be maximum i.e. multiplicant = FFFFH and multiplier = FFFFH. In
this case the result of multiplication will be FFFE0001H which is 32-bit long. Therefore we need
atleast four consecutive memory locations to store the result of multiplaction. For this reason, the
result of the multiplication should be stored at four successive memory locations 8054, 8055, 8056
and 8057 from least significant byte to most significant byte. Here repeatative addition is not
utilized to implement the program, because it will take long time to execute the program. That's
why the technique of manual multiplication of two binary numbers is used here. As the result is four
bytes long, a consecutive block of four memory locations from 8054 to 8057 will be initialized to
00000000H so that every time the multiplicant or the left shifted version of the multiplicant can be
added with the content of that block of memory and the result of addition can be stored again into
the same block of memory (8054 – 8057).

The bits of the divisor are searched starting from LSB to MSB one by one. If LSB is found 1, add
the 32-bit multiplicant formed by adding 16 no. of 0 at the MSB side, with the content of memory
block (8054 – 8057) and the result is stored again into the same block. If the next bit of the LSB of
the multiplier is 1, the 32-bit multiplicant shifted one position left will be added. This process will
continue upto the MSB of the multiplier. If any bit of the multiplier is found 0, no action is taken
except the multiplicant will be shifted left by one position. In this program, after shifting the
multiplicant left each time and inserting zero from the side of LSB, it will be stored at the memory
locations starting from 8058 to 805B. For better understanding let's take an example of 16-bit
multiplication which is done using the above mentioned technique.

__
Department of Electronics & Communication Engineering

8085 38

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

16-bit Multiplicant (x) = 1001 0111 1110 0010 & 16-bit Multiplier (y) = 1100 0011 1110 0111
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Muliplicant (x): 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0

Multiplier (y): 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0

0 0

0 0

0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

--

0 1 1 1 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1 1 0 0 1 0 1 1 1 0 1 1 1 0

The momory locations for storing the 16-bit multiplicant, 16-bit multiplier, 32-bit result and 32-bit
shifted pattern of multiplicant initially are shown pictorically in Fig-3.15 below.

Fig -3.15 : Memory locations containing Multiplicant, Multiplier, Result, Left shifted Multiplicant

__
Department of Electronics & Communication Engineering

8085 39

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

The above mentioned example clearly explains that how the multiplication of two 16-bit numbers
are being done manually. Now the flowchart of this program is given in Fig-3.16.

Fig-3.16: Flowchart of multiplication between two 16-bit numbers

Assembly Language Program 3.8:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LHLD 8050 2A 50 80 3 16

2 8003 SHLD 8058 22 58 80 3 16

3 8006 LXI H,0000 21 00 00 3 10

__
Department of Electronics & Communication Engineering

8085 40

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

4 8009 SHLD 8054 22 54 80 3 16

5 800C SHLD 8056 22 56 80 3 16

6 800F SHLD 805A 22 5A 80 3 16

7 8012 LOOP STC 37 1 4

8 8013 CMC 3F 1 4

9 8014 LXI H,8053 21 53 80 3 10

10 8017 MOV A,M 7E 1 7

11 8018 RAR 1F 1 4

12 8019 MOV M,A 77 1 7

13 801A DCX H 2B 1 6

14 801B MOV A,M 7E 1 7

15 801C RAR 1F 1 4

16 801D MOV M,A 77 1 7

17 801E JNC SKIP D2 34 80 3 10 (True) / 7
(False)

18 8021 MVI C,04 0E 04 2 7

19 8023 LXI D,8058 11 58 80 3 10

20 8026 LXI H,8054 21 54 80 3 10

21 8029 STC 37 1 4

22 802A CMC 3F 1 4

23 802B REPEAT LDAX D 1A 1 7

24 802C ADC M 8E 1 7

25 802D MOV M,A 77 1 7

26 802E INX D 23 1 6

27 802F INX H 13 1 6

28 8030 DCR C 0D 1 4

29 8031 JNZ REPEAT C2 2B 80 3 10 (True) / 7
(False)

30 8034 SKIP CALL SHIFT CD 40 80 3 18

31 8037 LHLD 8052 2A 52 80 3 16

__
Department of Electronics & Communication Engineering

8085 41

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

32 803A MOV A,L 7D 1 4

33 803B ORA H B4 1 4

34 803C JNZ LOOP C2 12 80 3 10 (True) / 7
(False)

35 803F HLT 76 1 5

36 8040 SHIFT STC 37 1 4

37 8041 CMC 3F 1 4

38 8042 MVI C,04 0E 04 2 7

39 8044 LXI H,8058 21 58 80 3 10

40 8047 ROTATE MOV A,M 7E 1 7

41 8048 RAL 17 1 4

42 8049 MOV M,A 77 1 7

43 804A INX H 23 1 6

44 804B DCR C 0D 1 4

45 804C JNZ ROTATE C2 47 80 3 10 (True) / 7
(False)

46 804F RET C9 1 10

TOTAL = 80

Result of Program3.8:
SET1 ►
Input

Address Content Remarks

8050 FF Lower Byte of Multiplicand

8051 FC Higher Byte of Multiplicand

8052 FE Lower Byte of Multiplier

8053 FB Higher Byte of Multiplier

Output

Address Content Remarks

8054 02 Byte1 of Result

8055 0A Byte2 of Result

8056 09 Byte3 of Result

8057 F9 Byte4 of Result

__
Department of Electronics & Communication Engineering

8085 42

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 ►
Input

Address Content Remarks

8050 DD Lower Byte of Multiplicand

8051 FC Higher Byte of Multiplicand

8052 FE Lower Byte of Multiplier

8053 00 Higher Byte of Multiplier

Output

Address Content Remarks

8054 46 Byte1 of Result

8055 E3 Byte2 of Result

8056 FA Byte3 of Result

8057 00 Byte4 of Result

3.9: Write a program to divide two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the quotient at 8052 and remainder at 8053 after the
division. Assume the divident is stored at the memory location 8050 and the divisor at 8051.

In case of division of two 8-bit numbers, the quotient and the remainder both will be 8-bit long.
Therefore we need two consecutive memory locations to store the result of the division. For this
reason, here the result of the division should be stored at two successive memory locations 8052
and 8053, where 8052 should hold the quotient and 8053 should hold the remainder. Here
repeatative subtraction is utilized to perform the division between two 8-bit numbers. For example,
suppose divident = 0E and divisor = 03. Hence to get the quotient we have to perform subtraction
(divident – divisor) and the subtraction will continue until divident will be less than the divisor. In
this way, we will get the quotient to be 04. When the divident will be just less than the divisor, then
remainder will be equal to divident and we will get the remainder to be 02 here. Therefore we have
to take a counter with a initial value of 00 in this case and increment the counter by one each time
the subtraction is done. Ultimately, the value of the counter will be the quotient after the completion
of the division. But one thing is important to note that if the divisor = 00, the successive subtraction
will go on for infinite times, because of the division-by-zero error. We have to consider that
situation also. The value of the divisor should be checked and if the divisor is zero, the program
must be halted immediately.

__
Department of Electronics & Communication Engineering

8085 43

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Fig-3.17: Flowchart of division of two 8-bit numbers using successive subtraction

Assembly Language Program 3.9:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI D,00 16 00 2 7

2 8002 LXI H,8050 21 50 80 3 10

3 8005 MOV B,M 46 1 7

4 8006 INX H 23 1 6

5 8007 XRA A AF 1 4

6 8008 CMP M BE 1 7

7 8009 JZ ZERO CA 1A 80 3

8 800C MOV A,B 78 1 4

9 800D AGAIN CMP M BE 1 7

10 800E JC SKIP DA 16 80 3 10 (True) / 7

__
Department of Electronics & Communication Engineering

8085 44

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

(False)

11 8011 SUB M 96 1 7

12 8012 INR D 14 1 4

13 8013 JMP AGAIN C3 0D 80 3 10 (True) / 7
(False)

14 8016 SKIP INX H 23 1 6

15 8017 MOV M,D 72 1 7

16 8018 INX H 23 1 6

17 8019 MOV M,A 77 1 7

18 801A ZERO HLT 76 1 5

TOTAL = 27

Result of Program3.9:
SET1 ►
Input

Mem. Address Content Remarks

8050 FF No1 (Divident)

8051 0A No2 (Divisor)

SET2 ►
Input

Mem. Address Content Remarks

8050 0F No1 (Divident)

8051 10 No2 (Divisor)

Output

Mem. Address Content Remarks

8052 19 Quotient

8053 05 Remainder

Output

Mem. Address Content Remarks

8052 00 Quotient

8053 0F Remainder

Program 3.10: Write a program to divide two 16-bit binary numbers which are stored from the
memory locations 8050 onwards and 8052 onwards and also store the quotient from the memory
location 8054 onwards and the remainder from the memory location 8056 onwards after the
division. Assume the divident is stored from the memory location 8050 onwards and the divisor
from the memory location 8052 onwards.

In case of division of two 16-bit numbers, the quotient and the remainder both will be 16-bit long.
Therefore we need four consecutive memory locations to store the result of the division. For this

__
Department of Electronics & Communication Engineering

8085 45

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

reason, here the result of the division should be stored at four successive memory locations 8054,
8055, 8056 and 8057, where 8054 and 8055 should hold the quotient and 8056 and 8057 should
hold the remainder. Here repetitive subtraction is utilized to perform the division between two 16-
bit numbers. Therefor, the same concept like division of two 8-bit numbers will be applied here.
The flowchart of the program to implement 16-bit division is shown in Fig-3.18 below.

Fig-3.18: Flowchart of the program performing division between two 16-bit numbers

__
Department of Electronics & Communication Engineering

8085 46

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.10:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI B,0000 01 00 00 3 10

2 8003 LOOP CALL COMP CD 26 80 3 18

3 8006 JC SKIP DA 1B 80 3 10 (True) / 7 (False)

4 8009 LXI D,8050 11 50 80 3 10

5 800C LXI H,8052 21 50 80 3 10

6 800F LDAX D 1A 1 7

7 8010 SUB M 96 1 7

8 8011 STAX D 12 1 7

9 8012 INX D 13 1 6

10 8013 INX H 23 1 6

11 8014 LDAX D 1A 1 7

12 8015 SBB M 9E 1 7

13 8016 STAX D 12 1 7

14 8017 INX B 03 1 6

15 8018 JMP LOOP C3 03 80 3 10 (True) / 7 (False)

16 801B SKIP INX H 23 1 6

17 801C MOV M,C 71 1 7

18 801D INX H 23 1 6

19 801E MOV M,B 70 1 7

20 801F LHLD 8050 2A 50 80 3 16

21 8022 SHLD 8056 22 56 80 3 16

22 8025 HLT 76 1 5

23 8026 COMP LXI D,8051 11 51 80 3 10

24 8029 LXI H,8053 21 53 80 3 10

25 802C LDAX D 1A 1 7

26 802D CMP M BE 1 7

27 802E JNZ NOEQU C2 35 80 3 10 (True) / 7 (False)

28 8031 DCX D 1B 1 6

__
Department of Electronics & Communication Engineering

8085 47

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

29 8032 DCX H 2B 1 6

30 8033 LDAX D 1A 1 7

31 8034 CMP M BE 1 7

32 8035 NOEQ
U

RET C9 1 10

TOTAL = 54

Result of Program3.10:
SET1 ►
Input

Address Content Remarks

8050 FF Lower Byte of Divident

8051 FC Higher Byte of Divident

8052 FE Lower Byte of Divisor

8053 01 Higher Byte of Divisor

SET2 ►
Input

Address Content Remarks

8050 AA Lower Byte of Divident

8051 BB Higher Byte of Divident

8052 55 Lower Byte of Divisor

8053 22 Higher Byte of Divisor

Output

Address Content Remarks

8054 7E Lower Byte of Quotient

8055 00 Higher Byte of Quotient

8056 FB Lower Byte of Remainder

8057 01 Higher Byte of Remainder

Output

Address Content Remarks

8054 05 Lower Byte of Quotient

8055 00 Higher Byte of Quotient

8056 01 Lower Byte of Remainder

8057 10 Higher Byte of Remainder

__
Department of Electronics & Communication Engineering

8085 48

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Exercise

1) Write a program to multiply an 8-bit number stored at memory location 8050H with 2, 4 and 8.
Store the three results of multiplication starting from 8060 onward.

2) Write a program to add first ten natural numbers and store the result at memory location 9000H.

3) Write a program to add first ten odd numbers and store the result at memory location 8050H.

4) Write a program to add first ten even numbers and store the result at memory location 8050H.

5) Write a program to find out the sum of the following series and store the result of summation in
DE register pair. 1 + 2 + 4 + 7 + 11 + …………… up to 10 no. of terms

6) Write a program to count no. of 1s in an 8-bit binary number stored at memory location 8050.

7) Write a program to check whether an 8-bit number stored at memory location 8060 is odd or
even. Store 0DH at memory location 8061 if the number is odd, otherwise store EEH at the same
memory location.

8) Write a program to check a number stored at 8050H is divisible by 4 or not. If it is divisible by 4,
store 01H at 8051H, otherwise store 00H at the same memory location.

9) Write a program to find out 1’s complement of a number stored at memory location 8050H
without using CMA instruction. [Hint: XRI FFH]

10) Write a program to determine the sum of two 8-bit numbers stored at memory locations 8050H
and 8051H respectively without using ADD instruction.

11) Write a program to find out 2’s complement of an 8-bit number stored at 9000H.

12) Write a program to find out 2’s complement of a 16-bit number which is stored at memory
location 9000H (lower byte of the number) and 9001H (higher byte of the number). The 2’s
complement of the number is to be stored at DE register pair.

13) Write a program to add two 32-bit binary numbers which are stored at the memory locations
starting from 9050 onward and the memory locations starting from 9060 onwards. Store the
result of the addition starting from memory location 9070 onward.

14) Write a program to check whether a number is positive or negative without using CMP/ CPI
instruction.

__
Department of Electronics & Communication Engineering

8085 49

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

15) Write a program to subtract two 8-bit numbers stored at memory locations 8050H and 8051
respectively using 2’s complement.

16) Write a program to determine the value of 2n where n is stored at memory location 8050H.

17) Write a program to swap the nibbles of an 8-bit number stored at memory location 8060H.

18) Write a program to find the mean of two 8-bit numbers stored at memory locations 8050H and
8051 respectively. Store the mean value at memory location 8052H. Consider both of the
numbers either even or odd to get the mean value to be integer.

19) Write a program to determine the nth term of an AP series, where the value of n, first term a and
common difference d are stored at memory locations 8050H, 8051H and 8052H respectively.
Store the nth term at memory location 8053H.

20) Write a program to determine the half of an 8-bit even number stored at memory location
8050H. (Do not use division by 2)

21) Write a program to check whether a number stored at 8050H is equal or greater or less than
100. If the number is equal store EAH, if greater than store ABH and if less than store BEH at
memory location 8051H, where EA represents EQUAL, AB represents ABOVE and BE
represents BELOW.

22) Memory location 8050H stores the marks of a student out of 100. Write a program to store the
Grade of the student depending upon the following criteria at memory location 8051H.

1. 90 ≤ Marks ≤ 100 → Grade O → Store 00H
2. 80 ≤ Marks < 90 → Grade E → Store EEH
3. 70 ≤ Marks < 80 → Grade A → Store AAH
4. 60 ≤ Marks < 70 → Grade B → Store BBH
5. 50 ≤ Marks < 60 → Grade C → Store CCH
6. 40 ≤ Marks < 50 → Grade D → Store DDH
7. Marks < 40 → Grade F → Store FFH

__
Department of Electronics & Communication Engineering

8085 50

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

4. Programs on Data Transfer and Data Separation

4.1: Write a program to transfer a block of ten data stored starting from the memory location
8050 onward to the memory location 8060 onward in forward direction.

This program basically performs the copy operation of a block of some data which are stored in the
memory locations consecutively. Here a set of ten 8-bit numbers are to be transferred from one
memory locations to another memory locations. The memory locations where the ten numbers are
stored, is called source block and the memory locations where the ten numbers have to be
transferred is called destination block. In this program the source block starts from the address 8050
to 8059 and the destination block starts from the address 8060 to 8069, which implies that the
number of 8050 will be copied to 8060, the number of 8051 will be copied to 8061, the number of
8052 will be copied to 8062 and so on. Therefore the structure of the source block and the
destination block before the execution of the program and after the execution of the program is
shown in Fig-4.1 below for clear conception.

F ig- 4.1 : The s ource block and the destination block before and after execution of the program

It is being seen from the above figure that the numbers stored in the source block remain unchanged
after the execution of the program. Hence it is exactly similar to the copy operation where source
remains unchanged but destination is changed with the contents of the source. Now the flowchart of
this program is shown in Fig-4.2.

__
Department of Electronics & Communication Engineering

8085 51

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Fig-4.2: Flowchart of transfering a block of ten data from one locations to another locations

__
Department of Electronics & Communication Engineering

8085 52

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.1:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI H,0A 26 0A 2 7

2 8002 LXI B,8050 01 50 80 3 10

3 8005 LXI D,8060 11 60 80 3 10

4 8008 LOOP LDAX B 0A 1 7

5 8009 STAX D 12 1 7

6 800A INX B 03 1 6

7 800B INX D 13 1 6

8 800C DCR H 25 1 4

9 800D JNZ LOOP C2 08 80 3 10 (True) / 7
(False)

10 8010 HLT 76 1 5

TOTAL = 17

Result of Program 4.1:
SET1 ►
Input

Source Block

Mem. Address Content Remarks

8050 11 No1

8051 22 No2

8052 33 No3

8053 44 No4

8054 55 No5

8055 66 No6

8056 77 No7

8057 88 No8

8058 99 No9

8059 AA No10

Output
Destination Block

Mem. Address Content Remarks

8060 11 No1

8061 22 No2

8062 33 No3

8063 44 No4

8064 55 No5

8065 66 No6

8066 77 No7

8067 88 No8

8068 99 No9

8069 AA No10

__
Department of Electronics & Communication Engineering

8085 53

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

4.2: Write a program to transfer a block of ten data stored starting from the memory location
8050 onward to the memory location 8055 onward in forward direction.

Although this program seems to be same as the previous program, but it is different from the first
program. Because here the source block extends from the memory location 8050 to 8059 and the
destination block extends from 8055 to 805E. Therefore some locations (8055 to 8059) of the
source block are common to the destination block i.e. there is a overlapping region between the
source block and the destination block. Now if we start to copy the numbers from the starting
address of the source block to the starting address of the destination block, there will be a complete
mishap, some numbers of the source block stored from 8055 to 8059 will be completely lost before
they transfered to the destination block. Here our aim is to copy the contents of the entire source
block to the destination block as it is, though the source block will not remain intact. What will
happen if we follow the procedure of the first program, is shown pictorially in Fig-4.3 below.

F ig -4.3 : The s ource block and the destination block following the procedure of the first program

To solve the above problem, we have to start the copy operation from the last address of the source
block to the last address of the destination block and go upward for the source block as well as the
destination block to transfer the numbers one by one. The status of the source block and the
destination block is shown pictorially before execution of the program and after execution of the
program in Fig-4.4 below.

__
Department of Electronics & Communication Engineering

8085 54

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

F ig -4.4 : Status of the s ource block and the destination block following the modified procedure

Hence it is clear from the above figure that the whole data of the source block is now transfered
successfully in the destination block. The flowchart of this program is shown in Fig-4.5.

__
Department of Electronics & Communication Engineering

8085 55

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Fig-4.5: Flowchart of data transfer from source block to destination block with overlapping area

__
Department of Electronics & Communication Engineering

8085 56

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.2:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI H,0A 26 0A 2 7

2 8002 LXI B,8059 01 59 80 3 10

3 8005 LXI D,805E 11 5E 80 3 10

4 8008 LOOP LDAX B 0A 1 7

5 8009 STAX D 12 1 7

6 800A DCX B 0B 1 6

7 800B DCX D 1B 1 6

8 800C DCR H 25 1 4

9 800D JNZ LOOP C2 08 80 3 10 (True) / 7
(False)

10 8010 HLT 76 1 5

TOTAL = 17

Result of Program 4.2:
SET1 ►
Input

Source Block

Mem. Address Content Remarks

8050 11 No1

8051 22 No2

8052 33 No3

8053 44 No4

8054 55 No5

8055 66 No6

8056 77 No7

8057 88 No8

8058 99 No9

8059 AA No10

Output
Destination Block

Mem. Address Content Remarks

8055 11 No1

8056 22 No2

8057 33 No3

8058 44 No4

8059 55 No5

805A 66 No6

805B 77 No7

805C 88 No8

805D 99 No9

805E AA No10

__
Department of Electronics & Communication Engineering

8085 57

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

4.3: Write a program to separate positive numbers and negative numbers into two different
memory blocks from a set of ten 8-bit signed numbers which are stored consecutively starting
from the memory location 8050 onward. The positive block starts from 8060 onward and the
negative block starts from 8070 onward, where positive count and negative count will be stored at
the starting address of each block.

We know, if the MSB of a binary number is high, the number will be treated as negative number
and if the MSB is low, the number is considered as positive number. So, the MSB of each of the ten
8-bit binary numbers which are stored at the source block starting from 8050 to 8059, is checked for
high or low and is separated into two blocks of memory depending upon the status of MSB. The
memory block which is storing the positive numbers, is called the positive block and the memory
block which is holding the negative numbers, is called the negative block. The positive block starts
from 8060 onward, where the first memory location 8060 holds the number of count of positive
numbers i.e. how many positive numbers and all the positive numbers begins to be stored from
8061 onward. Similarly the negative block starts from 8070 onward, where the first location 8070
stores the number of count of negative numbers and all the negative numbers will be stored starting
from the memory location 8071 onward. For better understanding we have taken a set of ten data
and separated them accordingly.

Fig-4.6: Source block, positive block and negative block before and after execution of the program

__
Department of Electronics & Communication Engineering

8085 58

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

As there are three memory blocks named as Source block, Positive block and Negative block, three
register pairs (HL, BC, DE) are used to point them. For example the source block, the positive
block and the negative block are pointed by HL, BC and DE register pair respectively. Therefore all
the general purpose resisters except accumulator are already used in this program and we have to
perform all the jobs required in this program should be accomplished by using accumuilator only.
That's why the memory location 804F, just before the strating address of the source block, is being
used as a counter to iterate the loop for ten times to separate ten signed binary numbers. Moreover
the starting address of the positive block and the starting address of the negative block are
initialized with 00H to store the positive count and the negative count respectively. The flowchart of
this program is given in Fig-4.7.

Fig-4.7: Flowchart of separating positive and negative numbers from a set of ten signed numbers

__
Department of Electronics & Communication Engineering

8085 59

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.3:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,804F 21 4F 80 3 10

2 8003 LXI B,8060 01 60 80 3 10

3 8006 LXI D,8070 11 70 80 3 10

4 8009 MVI A,0A 3E 0A 2 7

5 800B MOV M,A 77 1 7

6 800C XRA A AF 1 4

7 800D STAX B 02 1 7

8 800E STAX D 12 1 7

9 800F LOOP INX H 23 1 6

10 8010 MOV A,M 7E 1 7

11 8011 ADI 00 C6 00 2 7

12 8013 JM
NEGATIVE

FA 22 80 3 10 (True) / 7
(False)

13 8016 INX B 03 1 6

14 8017 STAX B 02 1 7

15 8018 LDA 8060 3A 60 80 3 13

16 801B INR A 3C 1 4

17 801C STA 8060 32 60 80 3 13

18 801F JMP SKIP C3 2B 80 3 10 (True) / 7
(False)

19 8022 NEGATIVE INX D 13 1 6

20 8023 STAX D 12 1 7

21 8024 LDA 8070 3A 70 80 3 13

22 8027 INR A 3C 1 4

23 8028 STA 8070 32 70 80 3 13

24 802B SKIP LDA 804F 3A 4F 80 3 13

25 802E DCR A 3D 1 4

26 802F STA 804F 32 4F 80 3 13

__
Department of Electronics & Communication Engineering

8085 60

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

27 8032 JNZ LOOP C2 0F 80 3 10 (True) / 7
(False)

28 8035 HLT 76 1 5

TOTAL = 54

Result of Program 4.3:
SET1 ►
Input

Source Block

Address Content Remarks

8050 05 No1

8051 0D No2

8052 DD No3

8053 AA No4

8054 12 No5

8055 32 No6

8056 71 No7

8057 0A No8

8058 8F No9

8059 0A No10

Output
 Positive Block Negative Block

Address Content Remarks Address Content Remarks

8060 07 Positive
Count

8070 03 Negative
Count

8061 05 +No1 8071 DD -No3

8062 0D +No2 8072 AA -No4

8063 12 +No5 8073 8F -No9

8064 32 +No6

8065 71 +No7

8066 0A +No8

8067 0A +No10

__
Department of Electronics & Communication Engineering

8085 61

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Exercise

1) Write a program to transfer a block of ten data stored starting from the memory location 8050
onward to the memory location 8060 onward in reverse order.

2) Write a program to separate odd numbers and even numbers into two different memory blocks
from a set of ten 8-bit numbers which are stored consecutively starting from the memory
location 8050 onward. The block of odd numbers starts from 8060 onward and the block of even
numbers starts from 8070 onward, where number of odd count and even count will be stored at
the starting address of each block.

3) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 8050H
onward. Write a program to insert an element stored at memory location 804FH into the memory
location 8053H.

4) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 8050H
onward. Write a program to delete the element which is stored at memory location 8055H.

5) Write a program to store AAH and BBH alternately for 100 times starting from memory location
9000H. Also store the last address where BBH is stored into DE register pair.

6) Write a program to store first ten natural numbers consecutively from memory location 8050H.

__
Department of Electronics & Communication Engineering

8085 62

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

5. Programs on Searching and Sorting

5.1: Write a program to find the largest number from a list of ten 8-bit numbers which are stored
from the memory location 8050 onward and store the largest number in register D.

If there are N no. of 8-bit numbers in a data set, then (N – 1) no. of comparisons should be
performed taking two consecutive numbers at a time to find out the largest number. For each
comparison the larger one among the two numbers will be stored in a register and ultimately we
shall get the largest number saved inside that register after (N – 1) comparisons. Therefore nine
comparisons will be done in this program, because here we have to find out the largest number from
a set of ten numbers i.e. N = 10. During every comparison the larger one is to be stored inside
accumulator which will hold the largest number after the completion of nine comparisons finally.
For clear understanding, an example for determining the largest number from a set of six numbers
in this way is given pictorially in Fig-5.1 below.

Fig-5.1: Sequences to find out the largest number from a set of six numbers

It is being seen from the above figure that the largest number (EF) is stored inside register A
ultimately. The flowchart of the above mentioned program is given in Fig-5.2 below.

Department of Electronics & Communication Engineering

8085 63

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Fig-5.2: Flowchart of finding the largest number from a set of ten numbers

Department of Electronics & Communication Engineering

8085 64

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Assembly Language Program 5.1:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI C,09 0E 09 2 7

2 8002 LXI H,8050 21 50 80 3 10

3 8005 MOV A,M 7E 1 7

4 8006 LOOP INX H 23 1 6

5 8007 CMP M BE 1 7

6 8008 JNC SMALL D2 0C 80 3 10 (True) / 7
(False)

7 800B MOV A,M 7E 1 7

8 800C SMALL DCR C 0D 1 4

9 800D JNZ LOOP C2 06 80 3 10 (True) / 7
(False)

10 8010 MOV D,A 57 1 4

11 8011 HLT 76 1 5

TOTAL = 18

Result of Program 5.1:
SET1 ►
Input

Mem. Address Content Remarks

8050 05 No1

8051 0D No2

8052 DD No3

8053 AA No4

8054 12 No5

8055 32 No6

8056 71 No7

8057 0A No8

8058 8F No9

8059 0A No10

Output

D → DD (Largest No.)

Department of Electronics & Communication Engineering

8085 65

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

5.2: Write a program to find the largest and the smallest number from a list of ten 8-bit numbers
which are stored from the memory location 8050 onward and store the largest and the smallest
numbers in register D and E respectively.

This program is a combination of Program 1 (To find the largest number) and Program 2 (To find
the smallest number) where the largest and the smallest both numbers are determined
simultaneously in a single program and stored inside the registers D and E respectively. Once the
previous two programs are clearly understood, then it will be easy to understand this program.
Therefore only the flowchart is sufficient to clarify the concept behind this program here. The
flowchart of this program is given in Fig-5.3.

In this program two comparisons between two numbers are done consecutively, one for checking
the larger number which will be stored in D register always and another for checking the smaller
number which will be saved in E register always. Thus we get the largest number inside D register
and the smallest number inside E register after the completion of the execution of the program.

Department of Electronics & Communication Engineering

8085 66

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

F ig -5.3 : Flowchart of finding the largest and the smallest numbers from a set of ten numbers

Assembly Language Program 5.2:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI C,09 0E 09 2 7

2 8002 LXI H,8050 21 50 80 3 10

3 8005 MOV D,M 56 1 7

4 8006 MOV E,D 5A 1 4

Department of Electronics & Communication Engineering

8085 67

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

5 8007 LOOP INX H 23 1 6

6 8008 MOV A,D 7A 1 4

7 8009 CMP M BE 1 7

8 800A JNC SMALL D2 0E 80 3 10 (True) / 7
(False)

9 800D MOV D,M 56 1 7

10 800E SMALL MOV A,E 7B 1 4

11 800F CMP M BE 1 7

12 8010 JC LARGE DA 14 80 3 10 (True) / 7
(False)

13 8013 MOV E,M 5E 1 7

14 8014 LARGE DCR C 0D 1 4

15 8015 JNZ LOOP C2 07 80 3 10 (True) / 7
(False)

16 8018 HLT 76 1 5

TOTAL = 25

Result of Program 5.2:
SET1 ►
Input

Mem. Address Content Remarks

8050 05 No1

8051 0D No2

8052 DD No3

8053 AA No4

8054 12 No5

8055 32 No6

8056 71 No7

8057 0A No8

8058 8F No9

8059 0A No10

Output

D → DD (Largest No.)
E → 05 (Smallest No.)

Department of Electronics & Communication Engineering

8085 68

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

5.3: Write a program to arrange a set of ten 8-bit numbers stored from the memory location 8050
onward in ascending order.

It is a program of sorting and in this case, the Bubble sort technique is used to arrange the numbers.
In the scheme of Bubble sort, there will be (N – 1) no. of passes for N no. of 8-bit numbers and
number of comparisons done between two consecutive numbers decreases by one for every pass.
Comparisons among the two successive numbers are always started from the first number
corresponding to all passes. If there are five numbers, for 1st pass there will be four comparisons, for
2nd pass there will be three comparisons, for 3rd pass two comparisons and for 4th pass single
comparisons will be done. In each comparison, if first number is greater than the second one, they
are interchanged i.e. the first number goes in the position of second number and the second number
comes in the position of the first number. In this way the largest number will occupy the last
position after the completion of 1st pass. Similarly the second largest number will be placed at the
last but one position after the completion of 2nd pass. If this process continues, we get completely
sorted numbers in ascending order after the completion of all the passes. Now it is necessary to take
an example to sort five numbers in ascending order for better clarification shown in Fig-5..4.

Department of Electronics & Communication Engineering

8085 69

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Fig-5.4: Sequences to find out the largest number from a set of six numbers

Department of Electronics & Communication Engineering

8085 70

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

The flowchart of this program is shown in Fig-5.5 below.

Fig-5.5: Flowchart of Bubble sort to arrange ten numbers in ascending order

Department of Electronics & Communication Engineering

8085 71

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Assembly Language Program 5.3:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI C,09 0E 09 2 7

2 8002 LOOP1 MOV D,C 51 1 4

3 8003 LXI H,8050 21 50 80 3 10

4 8006 LOOP2 MOV A,M 7E 1 7

5 8007 INX H 23 1 6

6 8008 CMP M BE 1 7

7 8009 JC SKIP DA 11 80 3 10 (True) / 7
(False)

8 800C MOV B,M 46 1 7

9 800D MOV M,A 77 1 7

10 800E DCX H 2B 1 6

11 800F MOV M,B 70 1 7

12 8010 INX H 23 1 6

13 8011 SKIP DCR D 15 1 4

14 8012 JNZ LOOP2 C2 06 80 3 10 (True) / 7
(False)

15 8015 DCR C 0D 1 4

16 8016 JNZ LOOP1 C2 02 80 3 10 (True) / 7
(False)

17 8019 HLT 76 1 5

TOTAL = 26

Department of Electronics & Communication Engineering

8085 72

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Result of Program 5.3:
SET1 ►
Input

Before Sorting

Mem. Address Content Remarks

8050 05

8051 0D

8052 DD

8053 AA

8054 12

8055 32

8056 71

8057 0A

8058 8F

8059 0A

Output
After Sorting

Mem. Address Content Remarks

8050 05

8051 0A

8052 0A

8053 0D

8054 12

8055 32

8056 71

8057 8F

8058 AA

8059 DD

5.4: Suppose two sorted lists of ten and five numbers are stored starting from memory location
8060H onward and 8070H onward respectively. Write a program to merge these two sorted lists
into a separate list in such a way that the generated list also will be in sorted form and will be
stored from 8080H onward. Assume all the lists are sorted in ascending order in this program.

In this case 1st sorted list is stored from 8060H and 2nd sorted list is stored from 8070H. If the 1st and
2nd list consist of m and n no. of elements, the 3 rd list after merging will consist (m + n) no. of
elements. Here one element from the 1st list and another element from the 2nd list will be compared
to each other. Between these two elements which one is smaller will be copied into the 3rd list. Thus
this procedure will continue until any one list becomes exhausted i.e. all the elements of any one list
are transferred to the 3rd list. After this, the remaining elements of the other list will be copied to 3 rd

list consecutively until it becomes exhausted. Finally the 3rd list of (m + n) elements thus formed
starting from memory location 8080H, becomes automatically sorted in ascending order. The above
mentioned procedure is explained pictorially as shown below with two lists of 5 and 2 elements
respectively.

Department of Electronics & Communication Engineering

8085 73

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Iteration 1:

 1st Sorted List 2nd Sorted List 3rd Sorted List

Address Content Address Content Address Content

8060 05 (Smaller) ↔ 8070 0A 8080 05

8061 0D 8071 32

8062 DD

8063 DF

8064 EE

Iteration 2:

 1st Sorted List 3rd Sorted List

Address Content 2nd Sorted List Address Content

8060 05 Address Content 8080 05

8061 0D ↔ 8070 0A (Smaller) 8081 0A

8062 DD 8071 32

8063 DF

8064 EE

Iteration 3:
 3rd Sorted List

1st Sorted List 2nd Sorted List Address Content

Address Content Address Content 8080 05

8060 05 8070 0A 8081 0A

8061 0D (Smaller) ↔ 8071 32 8082 0D

8062 DD

8063 DF

8064 EE

Department of Electronics & Communication Engineering

8085 74

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Iteration 4:
 3rd Sorted List

1st Sorted List Address Content

Address Content 2nd Sorted List 8080 05

8060 05 Address Content 8081 0A

8061 0D 8070 0A 8082 0D

8062 DD ↔ 8071 32 (Smaller) 8083 32

8063 DF 2nd Sorted List is exhausted

8064 EE

Iteration 5:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 8080 05

Address Content Address Content 8081 0A

8060 05 8070 0A 8082 0D

8061 0D 8071 32 8083 32

8062 DD 8084 DD

8063 DF

8064 EE

Iteration 6:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 8080 05

Address Content Address Content 8081 0A

8060 05 8070 0A 8082 0D

8061 0D 8071 32 8083 32

8062 DD 8084 DD

8063 DF 8085 DF

8064 EE

Department of Electronics & Communication Engineering

8085 75

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Iteration 7:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 8080 05

Address Content Address Content 8081 0A

8060 05 8070 0A 8082 0D

8061 0D 8071 32 8083 32

8062 DD 8084 DD

8063 DF 8085 DF

8064 EE 8086 EE

Note: Gray colored cells are indicating that they have already been transferred to destination
memory locations.

In this program register pair BC and HL acts as memory pointer of 1st sorted list and 2nd sorted list
respectively and DE register pair is the memory pointer of 3rd merged list. Three memory locations
(805FH, 806FH and 807FH) will be used as counters of 1st, 2nd and 3rd list respectively. After every
comparison the smaller element will be added to the 3rd list and the memory pointer DE of 3rd list
along with any one memory pointer (either BC or HL register pair) will be incremented by 1 to get
access of the next memory location. This process will be repeated until any one counter of 1 st or 2nd

list becomes zero. As soon as the particular counter of one list becomes zero, the remaining
elements of the other list will be added to the 3rd list one by one. Thus a merged 3rd list whose all the
elements are arranged in ascending order is formed ultimately.

Assembly Language Program 5.4:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI B,8060 01 60 80 3 10

2 8003 LXI H,8070 21 70 80 3 10

3 8006 LXI D,8080 11 80 80 3 10

4 8009 MVI A,0A 3E 0A 2 7

5 800B STA 805F 32 5F 80 3 13

6 800E MVI A,05 3E 05 2 7

7 8010 STA 806F 32 6F 80 3 13

8 8013 MVI A,0F 3E 0F 2 7

9 8015 STA 807F 32 7F 80 3 13

Department of Electronics & Communication Engineering

8085 76

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

10 8018 REPEAT LDA 805F 3A 5F 80 3 13

11 801B CPI 00 FE 00 2 7

12 801D JZ L1 CA 3B 80 3 10/7

13 8020 LDA 806F 3A 6F 80 3 13

14 8023 CPI 00 FE 00 2 7

15 8025 JZ L2 CA 2D 80 3 10/7

16 8028 LDAX B 0A 1 7

17 8029 CMP M BE 1 7

18 802A JNC L1 D2 3B 80 3 10/7

19 802D L2 LDAX B 0A 1 7

20 802E STAX D 12 1 7

21 802F INX B 03 1 6

22 8030 INX D 13 1 6

23 8031 LDA 805F 3A 5F 80 3 13

24 8034 DCR A 3D 1 4

25 8035 STA 805F 32 5F 80 3 13

26 8038 JMP END C3 46 80 3 10

27 803B L1 MOV A,M 7E 1 7

28 803C STAX D 12 1 7

29 803D INX H 23 1 6

30 803E INX D 13 1 6

31 803F LDA 806F 3A 6F 80 3 13

32 8042 DCR A 3D 1 4

33 8043 STA 806F 32 6F 80 3 13

34 8046 END LDA 807F 3A 7F 80 3 13

35 8049 DCR A 3D 1 4

36 804A STA 807F 32 7F 80 3 13

37 804D JNZ REPEAT C2 18 80 3 10/7

38 8050 HLT 76 1 5

TOTAL = 81

Department of Electronics & Communication Engineering

8085 77

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Result of Program 5.4:

SET1 ►
Input

 1st Sorted List 2nd Sorted List

Address Content Address Content

8060 05 8070 0A

8060 0D 8071 1F

8062 A5 8072 32

8063 AA 8073 A9

8064 AF 8074 B9

8065 B1

8066 CC

8067 D6

8068 DA

8069 DD

Output

3rd Sorted List

Address Content

8080 05

8081 0A

8082 0D

8083 1F

8084 32

8085 A5

8086 A9

8087 AA

8088 AF

8089 B1

808A B9

808B CC

808C D6

808D DA

808E DD

Exercise

1) Write a program to find the smallest number from a list of sixteen 8-bit numbers which are stored from the
memory location 8050 onward and store the smallest number in register E.

2) Write a program to arrange a set of ten 8-bit numbers stored from the memory location 8050 onward in
descending order using bubble sort.

3) Write a program to determine the number of times FF present in a set of 20 8-bit numbers which are
stored from memory location 9000H.

4) Write a program to count the number of times 55H repeated in a set of 20 numbers stored consecutively
starting from 8060 onward. Store the count value at the memory location 805FH.

5) Suppose two sorted lists of eight and five numbers are stored in ascending order starting from memory
location 9000H onward and 9020H onward respectively. Write a program to merge these two sorted lists
into a separate list in such a way that the generated list will be in descending order and will be stored
from 9050H onward.

Department of Electronics & Communication Engineering

8085 78

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6. Programs on Data Conversion

6.1: Write a program to convert a 2-digit packed BCD number stored at memory location 8050H
to unpacked BCD numbers which will be stored at memory locations 8051H and 8052H.

We know that a 2-digit packed BCD number is 8 bits long where lower 4 bits (lower nibble) forms
LSD (Least significant digit) and upper 4 bits (upper nibble) forms MSD (Most significant digit).
Now these two digits should be separated to form two unpacked BCD numbers. For example – 52 is
a packed BCD and the corresponding unpacked BCD numbers are 05 and 02.

Now to extract out the LSD the packed BCD should be AND operated with 0FH. On the contrary
the MSD will be separated after performing AND operation with F0H and the result of AND
operation has to be shifted right 4 times. How a packed BCD 52H will be converted to unpacked
BCDs are shown below.

B7 B6 B5 B4 B3 B2 B1 B0

2-digit packed BCD (52H) → 0 1 0 1 0 0 1 0
0FH → 0 0 0 0 1 1 1 1

Bitwise AND operation → --
Unpacked BCD with LSD (02H) → 0 0 0 0 0 0 1 0

B7 B6 B5 B4 B3 B2 B1 B0

2-digit packed BCD (52H) → 0 1 0 1 0 0 1 0
F0H → 1 1 1 1 0 0 0 0

Bitwise AND operation → --
Result of AND operation (50H) → 0 1 0 1 0 0 0 0

After 1st right shift → 0 0 1 0 1 0 0 0
After 2nd right shift → 0 0 0 1 0 1 0 0
After 3rd right shift → 0 0 0 0 1 0 1 0

Unpacked BCD with MSD (05H) →
(After 4th right shift)

0 0 0 0 0 1 0 1

__
Department of Electronics & Communication Engineering

8085 79

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.1:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 MOV B,A 47 1 4

4 8005 ANI 0F E6 0F 2 7

5 8007 INX H 23 1 6

6 8008 MOV M,A 77 1 7

7 8009 MOV A,B 78 1 4

8 800A ANI F0 E6 F0 2 7

9 800C RRC 0F 1 4

10 800D RRC 0F 1 4

11 800E RRC 0F 1 4

12 800F RRC 0F 1 4

13 8010 INX H 23 1 6

14 8011 MOV M,A 77 1 7

15 8012 HLT 76 1 5

TOTAL = 19

Result of Program 6.1:
SET1 ►
Input

Mem. Address Content Remarks

8050 52 2 digit packed BCD

SET2 ►
Input

Mem. Address Content Remarks

8050 94 2 digit packed BCD

Output

Address Content Remarks

8051 02 Unpacked BCD with LSD

8052 05 Unpacked BCD with MSD

Output

Address Content Remarks

8051 04 Unpacked BCD with LSD

8052 09 Unpacked BCD with MSD

__
Department of Electronics & Communication Engineering

8085 80

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.2: Write a program to convert two unpacked BCD numbers stored at memory locations 9050H
and 9051H to a two digits packed BCD number which will be stored at memory locations 9052H.
Assume that the memory locations 9050H and 9051H is holding the unpacked BCD containing
MSD and the unpacked BCD containing LSD respectively.

In this program two unpacked BCD numbers – one containing LSD and other containing MSD are
joined together to a two digits packed BCD numbers. To do this the unpacked BCD consisting of
MSD are shifted left for four times and then it will be OR-operated with the unpacked BCD
consisting of LSD to construct the packed BCD number. Two unpacked BCD numbers 04 (LSD)
and 08 (MSD) are converted to 2-digit packed BCD using the following technique as shown below.

B7 B6 B5 B4 B3 B2 B1 B0

Unpacked BCD containing MSD (08H) → 0 0 0 0 1 0 0 0
After 1st left shift → 0 0 0 1 0 0 0 0
After 2nd left shift → 0 0 1 0 0 0 0 0
After 3rd left shift → 0 1 0 0 0 0 0 0
After 4th left shift → 1 0 0 0 0 0 0 0

Unpacked BCD containing LSD (04H) → 0 0 0 0 0 1 0 0
Bitwise OR operation → --

2-digit Packed BCD (84H) → 1 0 0 0 0 1 0 0

Assembly Language Program 6.2:

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,9050 21 50 90 3 10

2 8003 MOV A,M 7E 1 7

3 8004 RLC 07 1 4

4 8005 RLC 07 1 4

5 8006 RLC 07 1 4

6 8007 RLC 07 1 4

7 8008 INX H 23 1 6

8 8009 ORA M B6 1 7

9 800A INX H 23 1 6

10 800B MOV M,A 77 1 7

11 800C HLT 76 1 5

TOTAL = 13

__
Department of Electronics & Communication Engineering

8085 81

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.2:
SET1 ►
Input

Address Content Remarks

9050 08 Unpacked BCD containing MSD

9051 04 Unpacked BCD containing LSD

SET2 ►
Input

Address Content Remarks

9050 06 Unpacked BCD containing MSD

9051 09 Unpacked BCD containing LSD

 Output

Address Content Remarks

9052 84 Packed BCD

 Output

Address Content Remarks

9052 69 Packed BCD

6.3: Write a program to convert a 2-digit packed BCD number stored at memory location 8050H
to its equivalent Hexadecimal number and store the converted Hexadecimal number into
memory location 8051H.

Method 1: The two digit BCD number is converted to two unpacked BCD numbers first. For
example if the packed BCD number is 25, the unpacked BCD numbers will be 02 and 05
respectively, where 02 is MSD (Most significant digit) and 05 is LSD (Least significant digit). Here
basically the two digits are separated and LSD is added with 10 times of MSD to get the equivalent
Hexadecimal number. Therefore Hexadecimal number = 10 × MSD + LSD.

In this program 10 × MSD is stored in register D and LSD is stored in register C. Finally register D
and register C are added together to get the Hexadecimal number. Basically 10 × MSD = 8 × MSD
+ 2 × MSD. If a number is shifted left 3 times, it will be multiplied with 8 and if a number is shifted
left 1 time, it will be multiplied with 2. Here initially MSD is in the upper nibble and the lower
nibble is zero. If it is shifted right 1 time, it is equivalent to shifting left 3 times for getting 8 × MSD
and if it is shifted right 3 times to get 2 × MSD. Here the number masked with F0H is shifted right
one time to get 8 × MSD and shifted right 3 times to get 2 × MSD. Let’s take an example.

The packed BCD number = 25
 Masked with 0F = 05 and masked with F0 = 20 = 0010 0000
After shifted right 1 time = 0001 0000 = 16 = 8 × 2
After shifted right 3 times = 0000 0100 = 4 = 2 × 2
Now 10 × 2 = 8 × 2 + 2 × 2
Therefore equivalent HEX number = 10 × 2 + 05

__
Department of Electronics & Communication Engineering

8085 82

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.3 (Method 1):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 MOV B,A 47 1 4

4 8005 ANI 0F E6 0F 2 7

5 8007 MOV C,A 4F 1 4

6 8008 MOV A,B 78 1 4

7 8009 ANI F0 E6 F0 2 7

8 800B RRC 0F 1 4

9 800C MOV D,A 57 1 4

10 800D RRC 0F 1 4

11 800E RRC 0F 1 4

12 800F ADD D 82 1 4

13 8010 ADD C 81 1 4

14 8011 INX H 23 1 6

15 8012 MOV M,A 77 1 7

16 8013 HLT 76 1 5

TOTAL = 20

Method 2: In this alternate method the equivalent Hexadecimal number is achieved in the same
way, only the difference in the technique to get 10 × MSD. Here packed BCD number is unpacked
first to store MSD and LSD into two separate registers. Suppose register A is holding MSD. Now A
is added with itself to hold 2 × MSD, then A is added with itself once again to store 4 × MSD and
finally A is added with itself to get 8 × MSD. Now 8 × MSD + 2 × MSD is performed to have 10 ×
MSD which is ultimately added with LSD to get the equivalent Hexadecimal number.

Assembly Language Program 6.3(Method 2):

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 MOV B,A 47 1 4

__
Department of Electronics & Communication Engineering

8085 83

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

SL. Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

4 8005 ANI 0F E6 0F 2 7

5 8007 MOV C,A 4F 1 4

6 8008 MOV A,B 78 1 4

7 8009 ANI F0 E6 F0 2 7

8 800B RRC 0F 1 4

9 800C RRC 0F 1 4

10 800D RRC 0F 1 4

11 800E RRC 0F 1 4

12 800F ADD A 87 1 4

13 8010 MOV D,A 57 1 4

14 8011 ADD A 87 1 4

15 8012 ADD A 87 1 4

16 8013 ADD D 82 1 4

17 8014 ADD C 81 1 4

18 8015 INX H 23 1 6

19 8016 MOV M,A 77 1 7

20 8017 HLT 76 1 5

TOTAL = 24

Result of Program 6.3:
SET1 ►
Input

Mem. Address Content Remarks

8050 91 2 digit packed BCD

SET2 ►
Input

Mem. Address Content Remarks

8050 15 2 digit packed BCD

Output

Mem. Address Content Remarks

8051 5B Equivalent Hex No.

Output

Mem. Address Content Remarks

8051 0F Equivalent Hex No.

__
Department of Electronics & Communication Engineering

8085 84

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.4: Write a program to convert an 8-bit Hexadecimal number stored at memory location 8050H
to unpacked BCDs which will be stored starting from memory location 8051H.

Method 1: In this case the Hexadecimal number is converted to unpacked BCDs i.e. three digits are
separated and saved into three different memory locations. For example – if the Hexadecimal
number is FEH (254 in Decimal), then three unpacked BCD digits 02, 05 and 04 will be stored into
three consecutive memory locations. For this purpose the Hexadecimal number is divided by 100
(64 in HEX) first, where quotient gives the 1st unpacked BCD. The remainder is again divided by 10
(0A in HEX) to get 2nd unpacked BCD in the quotient and 3rd unpacked BCD in the remainder.
These three unpacked BCDs are stored consecutively in the memory locations starting from 8051.

Assembly Language Program 6.4(Method 1):

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 MVI B,64 06 64 2 7

4 8006 CALL HEX2BCD CD 11 80 3 18

5 8009 MVI B,0A 06 0A 2 7

6 800B CALL HEX2BCD CD 11 80 3 18

7 800E INX H 23 1 6

8 800F MOV M,A 77 1 7

9 8010 HLT 76 1 5

10 8011 HEX2BCD INX H 23 1 6

11 8012 MVI M,FF 36 FF 2 10

12 8014 LOOP INR M 34 1 10

13 8015 SUB B 90 1 4

14 8016 JNC LOOP D2 14 80 3 10

15 8019 ADD B 80 1 4

16 801A RET C9 1 10

TOTAL= 27

__
Department of Electronics & Communication Engineering

8085 85

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.4 (Method 1):
SET1 ►
Input

Mem. Address Content Remarks

8050 FD 2 digit Hex No.

Hex No. = FD Equivalent Decimal No. = 253

SET2 ►
Input

Mem. Address Content Remarks

8050 E1 2 digit Hex No.

Hex No. = E1 Equivalent Decimal No. = 225

Output

Mem. Address Content Remarks

8051 02 Unpacked BCD1

8052 05 Unpacked BCD2

8053 03 Unpacked BCD3

Output

Mem. Address Content Remarks

8051 02 Unpacked BCD1

8052 02 Unpacked BCD2

8053 05 Unpacked BCD3

Method 2: In this method the Hexadecimal number is converted to packed BCD number using
DAA instruction. That means, if the Hexadecimal number is AFH (175 in Decimal), after
conversion we have two packed BCD numbers, one is 01 and other is 75 which will be stored
successively into two memory locations 8051H and 8052H. We know DAA converts the result of
two BCD addition into BCD. In 8085 all the numbers are represented in Hexadecimal form i.e. if
we want to represent BCD number, it is basically a HEX number. For example BCD number 15 is
basically a Hexadecimal number whose value is 21 and BCD number 18 is another Hexadecimal
number with value 24. If we add them, then we get the following results.

BCD Addition We get the following
15 15
18 18

-------- -------
33 2D

Desired Result Wrong Result

From the above example it is clear that the result of the BCD addition may be incorrect. DAA
instruction rectifies this error and generate the correct result in BCD. In the above example if DAA
is used after the addition, it will give 33 as a result. In this program if a Hexadecimal number is n, it
will be converted to the corresponding BCD number by initializing accumulator with 00H, adding 1
with itself n times and using DAA after every addition. Thus the accumulator will hold the packed
BCD number finally. Here one thing is important to mention that DAA instruction is used after
ADD instruction normally.

__
Department of Electronics & Communication Engineering

8085 86

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.4(Method 2):

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV C,M 4E 1 7

3 8004 MVI B,00 06 00 2 7

4 8006 XRA A AF 1 4

5 8007 LOOP ADI 01 C6 01 2 7

6 8009 DAA 27 1 4

7 800A JNC SKIP D2 0E 80 3 10

8 800D INR B 04 1 4

9 800E SKIP DCR C 0D 1 4

10 800F JNZ LOOP C2 07 80 3 10

11 8012 INX H 23 1 6

12 8013 MOV M,B 70 1 7

13 8014 INX H 23 1 6

14 8015 MOV M,A 77 1 7

15 8016 HLT 76 1 5

TOTAL= 23

Result of Program 6.4 (Method 2):
SET1 ►
Input

Mem. Address Content Remarks

8050 FD 2 digit Hex No.

Hex No. = FD Equivalent Decimal No. = 253

SET2 ►
Input

Mem. Address Content Remarks

8050 E1 2 digit Hex No.

Hex No. = E1 Equivalent Decimal No. = 225

Output

Mem. Address Content Remarks

8051 02 Higher Byte of BCD

8052 53 Lower Byte of BCD

Output

Mem. Address Content Remarks

8051 02 Higher Byte of BCD

8052 25 Lower Byte of BCD

__
Department of Electronics & Communication Engineering

8085 87

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.5: Write a program to add two BCD numbers stored at memory locations 8050H and 8051H
respectively. Store the result of the BCD addition at memory locations 8052H and 8053H
respectively.

The concept of BCD addition has been already discussed in Program 6.2 Method 2. How the DAA
instruction is used after addition to generate correct result is also explained. Therefore this program
is self-explanatory.

Assembly Language Program 6.5:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 INX H 23 1 6

4 8005 MVI B,00 06 00 2 7

5 8007 ADD M 86 1 7

8 8008 DAA 27 1 4

9 8009 JNC SKIP D2 0D 80 3 10

10 800C INR B 04 1 4

11 800D SKIP INX H 23 1 6

12 800E MOV M,B 70 1 7

13 800F INX H 23 1 6

14 8010 MOV M,A 77 1 7

15 8011 HLT 76 1 5

TOTAL= 18

Result of Program6.5:
Input

Mem. Address Content Remarks

8050 34 2 digit BCD No1

8051 74 2 digit BCD No2

Output

Address Content Remarks

8052 01 Higher Byte of Result

8053 08 Lower Byte of Result

Note: This program will not run properly in Jubin’s 8085 simulator due to wrong implementation of
DAA instruction. In simulator if CY flag is already set before the execution of DAA, DAA clears CY
flag, which happens for BCD addition between 98 and 97. This program will run perfectly in 8085
Trainer Kit.

__
Department of Electronics & Communication Engineering

8085 88

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.6: Write a program to convert a Hexadecimal number to its equivalent ASCII numbers. Store
the Hexadecimal number at 8060H and corresponding ASCII numbers at 8061 and 8062
respectively.

A single digit Hexadecimal number is represented by any digit from 0 to 9 and any alphabet from A
to F. Here the two digit Hexadecimal number is divided into two single digit Hexadecimal number
by masking the upper nibble and lower nibble. Now each single digit Hexadecimal number will be
converted to its equivalent ASCII numbers. The ASCII values of 0 to 9 and A to F are given below.

Hexadecimal Number ASCII Value

0 30H

1 31H

2 32H

3 33H

4 34H

5 35H

6 36H

7 37H

8 38H

9 39H

A 41H

B 42H

C 43H

D 44H

E 45H

F 46H

From the ASCII chart it is clear that if Hexadecimal number lies between 0 to 9, 30H should be
added with the Hexadecimal number and if Hexadecimal number lies between A to F, then 37H
should be added with it to get the corresponding ASCII value.

__
Department of Electronics & Communication Engineering

8085 89

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.6:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H, 8060 21 60 80 3 10

2 8003 MOV B,M 46 1 7

3 8004 MOV A,B 78 1 4

4 8005 ANI 0F E6 0F 2 7

5 8007 CALL HEX2ASC CD 19 80 3 18

6 800A INX H 23 1 6

7 800B MOV M,A 77 1 7

8 800C MOV A,B 78 1 4

9 800D ANI F0 E6 F0 2 7

10 800F RRC 0F 1 4

11 8010 RRC 0F 1 4

12 8011 RRC 0F 1 4

13 8012 RRC 0F 1 4

14 8013 CALL HEX2ASC CD 19 80 3 18

15 8016 INX H 23 1 6

16 8017 MOV M,A 77 1 7

17 8018 HLT 76 1 5

18 8019 HEX2ASC CPI 0A FE 0A 2 7

19 801B JC SKIP DA 20 80 3 10/7

20 801E ADI 07 C6 07 2 7

21 8020 SKIP ADI 30 C6 30 2 7

22 8022 RET C9 1 10

TOTAL= 35

__
Department of Electronics & Communication Engineering

8085 90

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.6:
SET1 ►
Input

Mem. Address Content Remarks

8060 5F 2 digit Hex No.

SET2 ►
Input

Mem. Address Content Remarks

8060 A0 2 digit Hex No.

Output

Address Content Remarks

8061 35 ASCII Value of 5

8062 46 ASCII Value of F

Output

Address Content Remarks

8061 41 ASCII Value of A

8062 30 ASCII Value of 0

6.7: Write a program to convert an 8-bit Hexadecimal number stored at memory location 8050H
to its equivalent gray code which will be stored at memory location 8051H.

To determine the corresponding gray code of a binary number the rule is to take the MSB of the
binary number unchanged and all the other bits of the gray code is achieved by performing EXOR
operation between two consecutive bits of the binary number. If an 8-bit binary number is
represented as B7B6B5B4B3B2B1B0, then the corresponding gray code can be determined as follows.

G7 = 0 ⊕ B7 = B7 G3 = B4 B⊕ 3

G6 = B7 ⊕ B6 G2 = B3 B⊕ 2

G5 = B6 B⊕ 5 G1 = B2 B⊕ 1

G4 = B5 B⊕ 4 G0 = B1 B⊕ 0

The above mentioned process can be implemented by right shifting the binary number one bit
position, which appends a zero at the MSB position and then performing bit-wise XOR operation
between the actual binary number and the right shifted version of the binary number as shown
below.

Binary Number → B7 B6 B5 B4 B3 B2 B1 B0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary Number → 0 B7 B6 B5 B4 B3 B2 B1

--
Gray Code → G7 G6 G5 G4 G3 G2 G1 G0

__
Department of Electronics & Communication Engineering

8085 91

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.7:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H, 8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 STC 37 1 4

4 8005 CMC 3F 1 4

5 8006 RAR 1F 1 4

6 8007 XRA M AE 1 7

7 8008 INX H 23 1 6

8 8009 MOV M,A 77 1 7

9 800A HLT 76 1 5

TOTAL = 11

Result of Program 6.7:
SET1 ►
Input

Mem. Address Content Remarks

8050 25 8-bit Hex Number

SET2 ►
Input

Mem. Address Content Remarks

8050 C2 8-bit Hex Number

Output

Address Content Remarks

8051 37 8-bit Gray Code

Output

Address Content Remarks

8051 A3 8-bit Gray Code

__
Department of Electronics & Communication Engineering

8085 92

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.8: Write a program to convert an 8-bit gray code stored at memory location 8050H to its
equivalent hex code which will be stored at memory location 8051H.

Suppose an 8-bit gray code is denoted as G7G6G5G4G3G2G1G0. Now this gray code can be converted
to corresponding binary number using the following process.

B7 = 0 G⊕ 7 = G7 B3 = B4 G⊕ 3

B6 = B7 G⊕ 6 = G7 ⊕ G6 B2 = B3 G⊕ 2

B5 = B6 G⊕ 5 B1 = B2 G⊕ 1

B4 = B5 G⊕ 4 B0 = B1 G⊕ 0

The above expressions to convert gray to binary are shown pictorially in Fig-6.1 for 4-bit
representation.

Fig-6.1: Gray to binary conversion

It is being observed that any bit in the converted binary number depends on the previous binary bit.
Due to this reason B6 binary bit can not be determined unless B7 bit is calculated, B5 bit can only be
determined after the evaluation of B6 bit and so on. In this program a loop is iterated for 7 times to
convert the gray code to binary as shown below.

Iteration 1:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Gray code → 0 G7 G6 G5 G4 G3 G2 G1

Binary code1 →G7 = B7 B6 D5 D4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

__
Department of Electronics & Communication Engineering

8085 93

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Iteration 2:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code1 → 0 B7 B6 D5 D4 D3 D2 D1

Binary code2 →G7 = B7 B6 B5 D4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 3:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code2 → 0 B7 B6 B5 D4 D3 D2 D1

Binary code3 →G7 = B7 B6 B5 B4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 4:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code3 → 0 B7 B6 B5 B4 D3 D2 D1

Binary code4 →G7 = B7 B6 B5 B4 B3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 5:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code4 → 0 B7 B6 B5 B4 B3 D2 D1

Binary code5 →G7 = B7 B6 B5 B4 B3 B2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

__
Department of Electronics & Communication Engineering

8085 94

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Iteration 6:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code5 → 0 B7 B6 B5 B4 B3 B2 D1

Binary code6 →G7 = B7 B6 B5 B4 B3 B2 B1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

Iteration 7:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code6 → 0 B7 B6 B5 B4 B3 B2 B1

Binary code7 →G7 = B7 B6 B5 B4 B3 B2 B1 B0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

It is being observed clearly that the Binary code7 thus achieved finally after 7th iteration is valid.

Assembly Language Program 6.8:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8050 21 50 80 3 10

2 8003 MOV A,M 7E 1 7

3 8004 MVI C,07 0E 07 2 7

4 8006 LOOP STC 37 1 4

5 8007 CMC 3F 1 4

6 8008 RAR 1F 1 4

7 8009 XRA M AE 1 7

8 800A DCR C 0D 1 4

9 800B JNZ LOOP C2 06 80 3 10/7

10 800E INX H 23 1 6

11 800F MOV M,A 77 1 7

12 8010 HLT 76 1 5

TOTAL = 17

__
Department of Electronics & Communication Engineering

8085 95

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.8:
SET1 ►
Input

Mem. Address Content Remarks

8050 37 8-bit Gray code

SET2 ►
Input

Mem. Address Content Remarks

8050 A3 8-bit Gray code

Output

Address Content Remarks

8051 25 8-bit hexadecimal number

Output

Address Content Remarks

8051 C2 8-bit hexadecimal number

Exercise

1) Write a program to convert an ASCII character stored at 8050H to its equivalent Hexadecimal
number which should be placed at memory location 8051H.

2) Write a program to convert a 2-digit packed BCD number stored at 8050H to its equivalent
packed Excess 3 codes which should be placed at memory location 8051.

[Example: Packed 2-digit BCD: 92 → Packed 2-digit Excess 3 Code: C5]

3) Write a program to convert a 2-digit packed Excess 3 code stored at 8050H to its equivalent 2-
digit packed BCD number which should be placed at memory location 8051H.

__
Department of Electronics & Communication Engineering

8085 96

College of Engineering and Management, Kolaghat.
CH 7: Programs on Look up Table

7. Programs on Look up Table

7.1: Write a program to determine the square of a number which is stored at memory location
8050H using Look up Table. Also store the square value at memory location 8051H.

Although to determine the square of a number can be evaluated by multiplying the number with
itself, but the square of a number is determined by using look up table to develop the concept of the
look up table. Here a portion of the memory has been used to store the square of the numbers 00H
to 0FH. We can not store the square of a number beyond 0F (15 in Decimal), because it exceeds the
maximum range of a 8-bit number, FFH (255 in Decimal). In this program the look up table has
been started from the memory location 8060H onward as shown below.

Look up Table

Memory Address Square of 8-bit number

8060H 00H (0) ←square of 0

8061H 01H (1) ←square of 1

8062H 04H (4) ←square of 2

8063H 09H (9) ←square of 3

8064H 10H (16) ←square of 4

8065H 19H (25) ←square of 5

8066H 24H (36) ←square of 6

8067H 31H (49) ←square of 7

8068H 40H (64) ←square of 8

8069H 51H (81) ←square of 9

806AH 64H (100) ←square of 10

806BH 79H (121) ←square of 11

806CH 90H (144) ←square of 12

806DH A9H (169) ←square of 13

806EH C4 (196) ←square of 14

806FH E1H (225) ←square of 15

To get the square of a number, that particular number is added with the starting address of the look
up table to get the memory location where the square of that number is saved. Now the content of
that memory address is retrieved to get the square of the number.

__
Department of Electronics & Communication Engineering

8085 97

College of Engineering and Management, Kolaghat.
CH 7: Programs on Look up Table

Assembly Language Program 7.1:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LDA 8050 3A 50 80 3 13

2 8003 MOV L,A 6F 1 4

3 8004 MVI H,00 26 00 2 7

4 8006 LXI D,8060 11 60 80 3 10

5 8009 DAD D 19 1 10

6 800A MOV A,M 7E 1 7

7 800B STA 8051 32 51 80 3 13

8 800E HLT 76 1 5

TOTAL= 15

Result of Program 7.1:
SET1 ►
Input

Mem. Address Content Remarks

8050 03 8-bit No.

SET2 ►
Input

Mem. Address Content Remarks

8050 0F 8-bit No.

Output

Address Content Remarks

8051 09 Square of No. 3

Output

Address Content Remarks

8051 E1 Square of No. F

__
Department of Electronics & Communication Engineering

8085 98

College of Engineering and Management, Kolaghat.
CH 7: Programs on Look up Table

Exercise

1) Suppose a Common Cathode 7-segment display is connected to data bus of 8085 via a 74373
latch and the latch will be enabled with the port address FFH. The different pins of the 7-
segment display is connected to the data bus as follows.
D0 → a segment
D1 → b segment
D2 → c segment
D3 → d segment
D4 → e segment
D5 → f segment
D6 → g segment
D7 → h dot point

Now write a program to convert a single digit BCD number stored at memory location 8050H to
its equivalent 7 segment display code using look up table and send the 7-segment equivalent
code through data bus using port address FFH to show the BCD number on the 7-segment
display.

2) Suppose a Common Anode 7-segment display is connected to data bus of 8085 via a 74373 latch
and the latch will be enabled with the port address FFH. The different pins of the 7-segment
display is connected to the data bus as follows.
D0 → a segment
D1 → b segment
D2 → c segment
D3 → d segment
D4 → e segment
D5 → f segment
D6 → g segment
D7 → h dot point

Now write a program to convert a single digit BCD number stored at memory location 8050H to
its equivalent 7 segment display code using look up table and send the 7-segment equivalent
code through data bus using port address FFH to show the BCD number on the 7-segment
display.

3) Write a program to find out the factorial of a 8-bit number stored at memory location 8050 and
store the factorial at memory location 8051 using look up table.

__
Department of Electronics & Communication Engineering

8085 99

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8. Programs on String Manipulation

A string consists of some characters which may be alphabets or numbers. The characters of a string
are stored in consecutive memory locations. In 8085 a string is basically composed of a series of
hexadecimal numbers which are stored in successive memory locations. For example – a string
“66778090AABBCCDDEEFF” stored consecutively from memory location 9000H as shown
below.

Mem. Addres Content

9000 66

9001 77

9002 80

9003 90

9004 AA

9005 BB

9006 CC

9007 DD

9008 EE

9009 FF

Here the programs related to string manipulation will be explained.

__
Department of Electronics & Communication Engineering

8085 100

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8.1: Suppose a string is stored from memory location 8050H to 8057H. Write a program to
reverse the string and store the reversed string starting from 8060H.

Suppose a string “0123456789ABCDEF” is stored from memory location 8050 to 8057 as shown in
Fig-8.1. After the execution of the program the string will be reversed and the reversed string
“FEDCBA9876543210” will be stored starting from 8060 onward as shown in Fig-8.2.

Mem. Address Content Mem. Address Content

8050 01 8060 FE

8051 23 8061 DC

8052 45 8062 BA

8053 67 8063 98

8054 89 8064 76

8055 AB 8065 54

8056 CD 8066 32

8057 EF 8067 10

 Fig-8.1: Source string Fig-8.2: Reversed string

Here every 8-bit data is to be copied starting from memory location 8057 to accumulator, swap the
nibbles of the accumulator by using RAL instruction and save the swapped data starting from
memory location 8060 onward. That means the source string should be copied from memory
location 8057 to 8050 and the reversed string should be stored from memory location 8060 to 8067.

Assembly Language Program 8.1:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8057 21 57 80 3 10

2 8003 LXI D,8060 11 60 80 3 10

3 8006 MVI C,08 0E 08 2 7

4 8008 LOOP MOV A,M 7E 1 7

5 8009 RLC 07 1 4

6 800A RLC 07 1 4

7 800B RLC 07 1 4

8 800C RLC 07 1 4

__
Department of Electronics & Communication Engineering

8085 101

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

9 800D STAX D 12 1 7

10 800E DCX H 2B 1 6

11 800F INX D 13 1 6

12 8010 DCR C 0D 1 4

13 8011 JNZ LOOP C2 06 80 3 10/7

14 8014 HLT 76 1 5

TOTAL= 21

Result of Program 8.1:

SET1 ►
Input

Source String

Mem. Address Content Remarks

8050 01

8051 23

8052 45

8053 67

8054 89

8055 AB

8056 CD

8057 EF

SET2 ►
Input

Source String

Mem. Address Content Remarks

8050 1F

8051 2E

8052 3D

8053 4C

Output
Reversed String

Mem. Address Content Remarks

8060 FE

8061 DC

8062 BA

8063 98

8064 76

8065 54

8066 32

8067 10

Output
Reversed String

Mem. Address Content Remarks

8060 88

8061 97

8062 A6

8063 B5

__
Department of Electronics & Communication Engineering

8085 102

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Mem. Address Content Remarks

8054 5B

8055 6A

8056 79

8057 88

Mem. Address Content Remarks

8064 C4

8065 D3

8066 E2

8067 F1

8.2: Suppose a string is stored from memory location 8050H to 8058H. Write a program to check
whether the string is palindrome or not. If the string is palindrome, 01H should be stored at
memory location 8059H, otherwise 00H should be stored in the same memory location.

A string is said to be palindrome when it matches exactly with its reversed form. For example – a
string “ABCDEF99FEDCBA” is palindrome, because if it is written in reverse order it will be the
same string “ABCDEF99FEDCBA”. Now for 8085 microprocessor a string always consists of even
no. of characters, because each memory location stores 8-bit data which includes two characters.
Hence for 8085 architecture it is not possible to store a string which comprises odd no. of
characters. Now the question arises how to check it. One thing is important to observe that every
pair of characters from starting position is just reverse of the pair of characters from end position. In
case of the above string “ABCDEF99FEDCBA” AB from starting positions is just reverse of BA
from end positions. Similarly CD is reversed of DC and EF is also reversed form of FE.

Here two cases arise – 1) no. of memory locations consumed by the string is even and 2) no. of
memory locations consumed by the string is odd. This implies that every pair of characters is
reversed and compared with its counterpart pair of characters up to n/2 for even no. of memory
locations and (⌊n/2⌋+1) for odd no. of memory locations where n is the no. of memory locations
consumed by the string. For examples - the string “ABCDEF99FEDCBA” takes 7 (odd)
consecutive memory locations. That’s why the checking has to be performed up to 4 th memory
location. At any stage if the reversed pair of characters does not match with its corresponding pair
of characters, the string will not be palindrome. If the reversed pair of characters matches with its
corresponding pair of characters up to n/2 or (⌊n/2⌋+1), the string will be a palindrome.
According to the condition of the program 01H will be stored at the memory location 8059H, if the
string is palindrome and 00H will be stored at 8059H if the string is not palindrome.

__
Department of Electronics & Communication Engineering

8085 103

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Assembly Language Program 8.2:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI D,8050 11 50 80 3 10

2 8003 LXI H,8058 21 58 80 3 10

3 8006 MVI C,05 0E 05 2 7

4 8008 LOOP LDAX D 1A 1 7

5 8009 RLC 07 1 4

6 800A RLC 07 1 4

7 800B RLC 07 1 4

8 800C RLC 07 1 4

9 800D CMP M BE 1 7

10 800E JNZ NOTPALIN C2 1C 80 3 10

11 8011 INX D 13 1 6

12 8012 DCX H 2B 1 6

13 8013 DCR C 0D 1 4

14 8014 JNZ LOOP C2 08 80 3 10

15 8017 XRA A AF 1 4

16 8018 INR A 3C 1 4

17 8019 JMP PALIN C3 1D 80 3 10

18 801C NOTPALIN XRA A AF 1 4

19 801D PALIN STA 8059 32 59 80 3 13

20 8020 HLT 76 1 5

TOTAL= 33

__
Department of Electronics & Communication Engineering

8085 104

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Result of Program 8.2:

SET1 ►
Input

Source String

Mem. Address Content Remarks

8050 AB

8051 CD

8052 EF

8053 12

8054 33

8055 21

8056 FE

8057 DC

8058 BA

SET2 ►
Input

Source String

Mem. Address Content Remarks

8050 AB

8051 CD

8052 EF

8053 12

8054 34

8055 21

8056 FE

8057 DC

8058 BA

Output

Mem. Address Content Remarks

8059 01 Palindrome

Output

Mem. Address Content Remarks

8059 00 Not Palindrome

__
Department of Electronics & Communication Engineering

8085 105

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8.3: Suppose two strings are stored into two memory blocks - 8050H to 8059H and 8060H to
8065H respectively. Write a program to concatenate these two strings and store the concatenated
string starting from memory location 8050H onward.

As per the program objective 1st string of 20 characters is stored starting from memory location
8050H to 8059H and 2nd string of 12 characters is stored from 8060H to 8065H. The target of this
program is to join or concatenate these two strings into one string. Therefore in this program the 2nd

string is appended at the end of the 1st string to form a 3rd string of 32 characters (20 characters of 1st

string + 12 characters of 2nd string) which will occupy 16 no. of memory locations from 8050H to
805FH. To understand the above mentioned illustration let’s take an example.

Suppose “0123456789ABCDEF9988” is the 1st string which is stored into the memory locations
from 8050H to 8059H and “A1B2C3D4E5F6” is the 2nd string which is stored into the memory
locations from 8060H to 8065H. After the execution of this program 1 st and 2nd string will be joined
together to form a 3rd string “ 0123456789ABCDEF9988A1B2C3D4E5F6” which will be stored
from the memory location 8050H to the memory location 805FH as shown in Fig-8.3.

 1st String 2nd String 3rd Concatenated String

Address Content Address Content Address Content

8050 01 8060 A1 8050 01

8051 23 8061 B2 8051 23

8052 45 8062 C3 8052 45

8053 67 8063 D4 8053 67

8054 89 8064 E5 8054 89

8055 AB 8065 F6 8055 AB

8056 CD 8056 CD

8057 EF 8057 EF

8058 99 8058 99

8059 88 8059 88

805A A1

805B B2

805C C3

805D D4

805E E5

805F F6

Fig-8.3: Two strings are concatenated to form a 3 rd string

__
Department of Electronics & Communication Engineering

8085 106

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Assembly Language Program 8.3:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8060 21 60 80 3 10

2 8003 LXI D,805A 11 5A 80 3 10

3 8006 MVI C,06 0E 06 2 7

4 8008 LOOP MOV A,M 7E 1 7

5 8009 STAX D 12 1 7

6 800A INX H 23 1 6

7 800B INX D 13 1 6

8 800C DCR C 0D 1 4

9 800D JNZ LOOP C2 08 80 3 10/7

10 8010 HLT 76 1 5

Result of Program 8.3:
SET1 ► I nput
 1st String 2nd String

Address Content Address Content

8050 01 8060 A1

8051 23 8061 B2

8052 45 8062 C3

8053 67 8063 D4

8054 89 8064 E5

8055 AB 8065 F6

8056 CD

8057 EF

8058 99

8059 88

 Output
 Concatenated 3rd String

Address Content

8050 01

8051 23

8052 45

8053 67

8054 89

8055 AB

8056 CD

8057 EF

8058 99

8059 88

805A A1

805B B2

805C C3

805D D4

805E E5

805F F6

__
Department of Electronics & Communication Engineering

8085 107

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 ►
 I nput
 1st String 2nd String

Address Content Address Content

8050 11 8060 BB

8051 22 8061 CC

8052 33 8062 DD

8053 44 8063 EE

8054 55 8064 FF

8055 66 8065 32

8056 77

8057 88

8058 99

8059 AA

 Output
 Concatenated 3rd String

Address Content

8050 11

8051 22

8052 33

8053 44

8054 55

8055 66

8056 77

8057 88

8058 99

8059 AA

805A BB

805B CC

805C DD

805D EE

805E FF

805F 32

8.4: Write a program to check whether a string stored from 8050 onward contains another sub-
string stored from 8060 onward or not. Store 01H into the memory location 8070H if the main
string contains the sub-string, otherwise store 02H into the memory location 8070H.

Here one string known as main string is stored from the memory location 8050H and another string
known as sub-string is stored starting from memory location 8060H. Obviously the length of the
sub-string will be less or equal to the length of the main string. Here four cases may happen.

Case 1: In this case no matching happens between the main string and sub-string. For example – if
the main string is “1234567890ABCDEF9988” and the sub-string is “2233445566”, it is observed
that there is no matching between the main string and the sub-string. Therefore 02H should be
stored into the memory location 8070H to indicate the mismatch between the two strings.

__
Department of Electronics & Communication Engineering

8085 108

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Case 2: Here partial matching occurs between the main string and the sub-string. For example – if
the main string is “1234567890ABCDEF9988” and the sub-string is “ABCDEF1122”, it is
observed that a portion of sub-string “ABCDEF” is found into the main string. As entire sub-string
is not found into the main string, it results mismatch between the main string and the sub-string.
Therefore 02H will be stored into the memory location 8070H.

Case 3: In this case the entire sub-string is found into the main string which results successful
matching between the two strings. Hence 01H should be stored in the memory location 8070H. For
example – complete matching occurs if the main string becomes “ 1234567890ABCDEF9988” and
the sub-string is “ABCDEF9988”.

Case 4: This case consists of both partial matching and complete matching. As complete matching
is found finally, 01H will be stored into the same memory location according to the program
criteria. For example – if main string is “ 12ABCD7890ABCDEF9988” and the sub-string is
“ABCDEF9988”, then partial matching occurs for “ABCD” from 2nd position whereas complete
matching happens for “ABCDEF9988” from 6th position.

Now these above mentioned four cases must be handled in the program to check the matching of
two strings. If the no. of 8-bit data in the main string is m and the no. of 8-bit data in the sub-string
is n, then there will be no chance of finding the whole sub-string inside the main string beyond (m –
n + 1)th data. Therefore we have to compare up to (m – n + 1)th data in the main string, beyond of
that there is no chance to get the entire sub-string into the main string. The following example will
reveal the above mentioned situation.

Suppose main string “1234567890ABCDEF8899” has 10 no. of 8-bit data and sub-string
“ABCDEF8899” has 5 no. of 8-bit data. Therefore we have to search for matching of data up to 6 th

(10 – 5 + 1) position i.e. up to the data “AB” into the main string, because beyond of that there is no
possibility to get the whole sub-string “ABCDEF8899”.

Here 1st 8-bit data of the sub-string is started to be compared with all the 8-bit data of main string
consecutively from 1st data to (m – n + 1)th data of the main string. If matching is found at any
stage, the rest of the data from the sub-string are compared with the data of the main string
consecutively. That means, if the 1st data of sub-string is matched with any data of main string, then
the comparisons between the pairs of the data – one from sub-string and other from main string are
performed successively until the end of the sub-string or a mismatch is found. If every pair of data
from the sub-string and the main string are matched perfectly, then it can be concluded that the sub-
string is found into the main string and if any mismatch is found, then the 1st data from sub-string
and the the data of main string where mismatch was found should be compared once again to get
the entire sub-string inside the remaining part of the main string. Here one important point to
consider that if mismatch is found after (m – n + 1)th data of the main string, then comparisons are
not carried out further to indicate the absence of the sub-string inside the main string.

__
Department of Electronics & Communication Engineering

8085 109

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

In the following program we have taken a main string with 10 no. of data and the sub-string with 5
no. of data. Therefore comparisons should continue up to 6th data of the main string. To fulfill this
purpose register C will act as counter of main string and initialized with 06H. Similarly register B is
used as counter of sub-string and initialized with 05H. In addition to this, register pair DE has been
used as memory pointer of main string and register pair HL has been used as memory pointer for
sub-string in this program. If a match is found, register C and B both will be decremented by one
for every iteration, otherwise register C only will be decremented by one for each iteration. There
are two loops in this program – one is controlled by the counter register C and other is controlled
by the counter register B. The loop of counter register C will continue until a matching between the
1st data from the sub-string and any data [up to (m – n + 1)th data] from the main string is found. On
the other hand if a matching is found, then the loop of counter register B will be initiated. If the
loop of register B is terminated by decreasing B to zero, it is clear that the sub-string is found inside
the main string and if the loop of register C is terminated for C = 0, then the sub-string is not found
into the main string.

Assembly Language Program 8.4:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 MVI C,06 0E 06 2 7

2 8002 LXI D,8050 11 50 80 3 10

3 8005 LXI H,8060 21 60 80 3 10

4 8008 REPEAT LDAX D 1A 1 7

5 8009 CMP M BE 1 7

6 800A JNZ NOTEQUAL C2 2B 80 3 10 / 7

7 800D MVI B,05 06 05 2 7

8 800F AGAIN LDAX D 1A 1 7

9 8010 CMP M BE 1 7

10 8011 JNZ NOMATCH C2 26 80 3 10 / 7

11 8014 INX D 13 1 6

12 8015 INX H 23 1 6

13 8016 MOV A,C 79 1 4

14 8017 CPI 01 FE 01 2 7

15 8019 JC BYPASS DA 1D 80 3 10 / 7

16 801C DCR C 0D 1 4

17 801D BYPASS DCR B 05 1 4

18 801E JNZ AGAIN C2 0F 80 3 10 / 7

19 8021 MVI A,01 3E 01 2 7

__
Department of Electronics & Communication Engineering

8085 110

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

20 8023 JMP FINAL C3 32 80 3 10

21 8026 NOMATCH DCX D 1B 1 6

22 8027 INR C 0C 1 4

23 8028 LXI H,8060 21 60 80 3 10

24 802B NOTEQUAL INX D 13 1 6

25 802C DCR C 0D 1 4

26 802D JNZ REPEAT C2 08 80 3 10 / 7

27 8030 MVI A,02 3E 02 2 7

28 8032 FINAL STA 8070 32 70 80 3 13

29 8035 HLT 76 1 5

TOTA = 54

Result of Program 8.4:
SET1 ► (Corresponds to Case 1)

I nput

 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 78 8063 88

8054 87 8064 99

8055 65

8056 43

8057 21

8058 CD

8059 EF

 Output

Address Content Remarks

8070 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8085 111

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 ► (Corresponds to Case 1)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 78 8063 88

8054 87 8064 99

8055 65

8056 AB

8057 CD

8058 EF

8059 88

SET3 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 78 8063 88

8054 AB 8064 99

8055 CD

8056 AB

8057 CD

8058 EF

8059 88

Output

Address Content Remarks

8070 02 Sub-string not found

Output

Address Content Remarks

8070 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8085 112

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET4 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 AB 8062 EF

8053 CD 8063 88

8054 56 8064 99

8055 78

8056 87

8057 EF

8058 88

8059 99

SET5 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 AB 8063 88

8054 CD 8064 99

8055 AB

8056 AB

8057 CD

8058 EF

8059 88

Output

Address Content Remarks

8070 02 Sub-string not found

Output

Address Content Remarks

8070 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8085 113

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET6 ► (Corresponds to Case 3)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 78 8063 88

8054 87 8064 99

8055 AB

8056 CD

8057 EF

8058 88

8059 99

SET7 ► (Corresponds to Case 3)

I nput
 Main String Sub-String

Address Content Address Content

8050 AB 8060 AB

8051 CD 8061 CD

8052 EF 8062 EF

8053 88 8063 88

8054 99 8064 99

8055 12

8056 34

8057 56

8058 78

8059 87

Output

Address Content Remarks

8070 01 Sub-string found

Output

Address Content Remarks

8070 01 Sub-string found

__
Department of Electronics & Communication Engineering

8085 114

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET8 ► (Corresponds to Case 4)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 AB 8061 CD

8052 CD 8062 EF

8053 AB 8063 88

8054 CD 8064 99

8055 EF

8056 88

8057 99

8058 34

8059 56

SET9 ► (Corresponds to Case 4)

I nput
 Main String Sub-String

Address Content Address Content

8050 12 8060 AB

8051 34 8061 CD

8052 56 8062 EF

8053 AB 8063 88

8054 CD 8064 99

8055 AB

8056 CD

8057 EF

8058 88

8059 99

Output

Address Content Remarks

8070 01 Sub-string found

Output

Address Content Remarks

8070 01 Sub-string found

__
Department of Electronics & Communication Engineering

8085 115

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8.5: Suppose two strings are stored into two memory blocks - 8050H to 8059H and 8060H to
8063H respectively. Write a program to insert the second string into the first string starting from
the memory location 8053H.

It can be observed that the second string stored from 8060H to 8063H has four 8-bit data and the
first string stored from 8050H to 8059H has ten 8-bit data. To insert the second string at the
memory location 8053H of the first string, all the data from 8053H to 8059H must be shifted into
the memory locations 8057H to 805DH first to make a space of 4 bytes so that the second string can
be accommodated into that memory space. After shifting the data the entire second string should be
copied from the memory locations 8060H to 8063H into the memory locations 8053H to 8056H.

Now to make a space of four consecutive memory locations starting from 8053H to 8056H, seven
8-bit data of first string from the memory locations 8053H to 8059H should be shifted to the
memory locations 8057H to 805DH. Hence register C has been considered as a counter and
initialized with 07H. After shifting these seven data, the four 8-bit data of the second string stored
from the memory location 8060H to 8063H should be copied into the memory locations 8053H to
8056H. For this purpose the register C will be initialized with 04H to act as a counter and will be
used to transfer these four data. Thus the second string will be inserted into the first string from the
memory location 8053H.

Assembly Language Program 8.5:

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

1 8000 LXI H,8059 21 59 80 3 10

2 8003 LXI D,805D 11 5D 80 3 10

3 8006 MVI C,07 0E 07 2 7

4 8008 REPEAT MOV A,M 7E 1 7

5 8009 STAX D 12 1 7

6 800A DCX H 2B 1 6

7 800B DCX D 1B 1 6

8 800C DCR C 0D 1 4

9 800D JNZ REPEAT C2 08 80 3 10 / 7

10 8010 MVI C,04 0E 04 2 7

11 8012 LXI D,8060 11 60 80 3 10

12 8015 AGAIN INX H 23 1 6

13 8016 LDAX D 1A 1 7

14 8017 MOV M,A 77 1 7

__
Department of Electronics & Communication Engineering

8085 116

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL Addresses Label Mnemonics Hex Codes No. of Bytes No. of T-States

15 8018 INX D 13 1 6

16 8019 DCR C 0D 1 4

17 801A JNZ AGAIN C2 15 80 3 10 / 7

18 801D HLT 76 1 5

TOTAL = 30

Result of Program 8.5:
SET1 ►

I nput
 1st String 2nd String

Address Content Address Content

8050 11 8060 BB

8051 22 8061 CC

8052 33 8062 DD

8053 44 8063 EE

8054 55

8055 66

8056 77

8057 88

8058 99

8059 AA

 Output

Address Content

8050 11

8051 22

8052 33

8053 BB

8054 CC

8055 DD

8056 EE

8057 44

8058 55

8059 66

805A 77

805B 88

805C 99

805D AA

__
Department of Electronics & Communication Engineering

8085 117

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 ►
 I nput

 1st String 2nd String

Address Content Address Content

8050 12 8060 BC

8051 23 8061 CD

8052 34 8062 DE

8053 45 8063 EF

8054 56

8055 67

8056 78

8057 89

8058 9A

8059 AB

Output

Address Content

8050 12

8051 23

8052 34

8053 BC

8054 CD

8055 DE

8056 EF

8057 45

8058 56

8059 67

805A 78

805B 89

805C 9A

805D AB

Exercise

1) Write a program to check whether two strings are identical or not. Consider the two strings
having same length of 16 characters are stored from memory location 8050 onward and 8060
onward respectively.

2) Write a program to replace all the characters ‘A’ with the character ‘D’ in a string which is stored
from the memory location 9000H onward.

__
Department of Electronics & Communication Engineering

8085 118

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

9. Details of 8255 peripheral in 8085 trainer kit
Interfacing programs of 8255 in 8085 trainer kit

The 8255 is a widely used programmable, parallel I/O device. It can be programmed to transfer data
under various conditions, from simple I/O to interrupt I/O. 8255 has 24 I/O pins that can be grouped
primarily in two 8-bit parallel ports: A and B with the remaining 8-bits as port C. 8 bits of port C
can be used as individual bits or be grouped in two 4 bit ports: CUPPER (CU) and CLOWER (CL) as in
Fig-9.1. The functions of these ports are defined by writing a control word in the control register.

Fig-9.2 shows all the functions of the 8255, classified according to two modes: the bit set/ reset
(BSR) mode and the I/O mode. The BSR mode is used to set or reset the bits in port C. The I/O
mode is further divided into three modes: Mode0, Mode1, Mode2. In Mode0, all ports function as
simple I/O ports. Mode1 is a handshaking mode whereby ports A and/ or port B use bits from port C
as handshaking signals. In the handshaking mode, two types of I/O data transfer can be
implemented: status check and interrupt. In Mode2, port A can be set up for bidirectional data
transfer using handshaking signals from port C and port B can be set up either in Mode0 or Mode1.

Fig- 9 .1: 8255 three I/O ports with address bus, data bus and control lines

Fig-9.2: 8255 different modes of operation

__
Department of Electronics & Communication Engineering

8085 119

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Fig-9.3: Block diagram of 8255 PPI

Fig-9.4: Pin diagram of 8255 PPI

__
Department of Electronics & Communication Engineering

8085 120

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

The block diagram and IC pin diagram of 8255 is shown in Fig-9.3 and Fig-9.4 respectively. The
block diagram of Fig-9.1 shows two 8-bit ports: A and B along with two 4-bit ports CL and CU. In
addition to this, there are 8-bit data bus (D0 -D7), two address lines (A0 and A1) and four control
lines: RESET, RD′, WR′ and CS′. The description of these control lines, address lines and data bus
are given below.

1) CS′ , A0, A1: CS′ (Chip Select) line is used to enable the 8255 IC. CS′ is normally connected to a
decoded address and and A0 and A1 are generally connected to the A0 and A1 address lines of
the 8085 microprocessor. These three lines gives the range of I/O addresses for which any one of
the three ports (port A, port B, port C) and the control register will be selected for operation.

CS′ A1 A0 Selected

0 0 0 Port A

0 0 1 Port B

0 1 0 Port C

0 1 1 Control Register

1 X X 8255 chip disabled

2) RESET: It is an active high signal which clears the control register and sets all the ports in input
mode.

3) RD′: This control signal enables read operation. When this signal is low, the microprocessor
8085 reads data from a selected I/O port of 8255.

4) WR′: This control signal enables write operation. When this signal is low, the microprocessor
8085 send/ write a data/ bit pattern into a selected I/O port or control register of 8255.

From the above discussion it is clear that the range of address by which I/O ports or control register
is selected depends upon the hardware connection of CS′ of 8255 with the 8085 microprocessor.
8255 chip is connected into the board of 8085 Trainer Kit. The schematic top views of 8255 in the
trainer kit SDA85H and SDA85M along with 26 pins sockets is shown in Fig-9.5. Among these 26
pins of the socket, 8 pins for port A, 8 pins for port B, 8 pins for port C and remaining 2 pins are
used for Vcc (+5V) and GND.

__
Department of Electronics & Communication Engineering

8085 121

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Fig-9.5: Top schematic views of SDA85H and SDA85M Trainer kit with 26 pin connector for 8255

In top schematic views of 8085 kit only 8085 IC, 8255 IC, Kit 7-Segment display with keyboard
and 26 pin connector for 8255 peripheral are shown for simplicity. There is a three pin jumper JP4
in the trainer kit SDA85H and a two pin jumper JP4 in the trainer kit SDA85M by which the
address ranges of different PORT and Control registers are selected. The details of these addresses
for selecting different port registers of 8255 is given in the following Table.

Jumper No. Description Addresses for selected PORTs & Control Register

3 pin JP4 (1 & 2
pins shorted)

Select address range
(D8H – DFH) for 8255

IC in SDA85H

D8 PORT A

D9 PORT B

DA PORT C

DB Control Register

DC PORT A

DD PORT B

DE PORT C

DF Control Register

__
Department of Electronics & Communication Engineering

8085 122

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Jumper No. Description Addresses for selected PORTs & Control Register

3 pin JP4 (2 & 3
pins shorted)

Select address range
(F0H – F7H) for 8255

IC in SDA85H

F0 PORT A

F1 PORT B

F2 PORT C

F3 Control Register

F4 PORT A

F5 PORT B

F6 PORT C

F7 Control Register

2 pin JP4 shorted Select address range
(D8H – DFH) for 8255
IC (U4) in SDA85M

D8 PORT A

D9 PORT B

DA PORT C

DB Control Register

DC PORT A

DD PORT B

DE PORT C

DF Control Register

2 pin JP4 shorted Select address range
(F0H – F7H) for 8255
IC (U3) in SDA85M

F0 PORT A

F1 PORT B

F2 PORT C

F3 Control Register

F4 PORT A

F5 PORT B

F6 PORT C

F7 Control Register

The 8255 Control Word is given in the following Fig-9.6. Now 8255 can be operated in two modes,
one is I/O Mode and another is BSR Mode. The selection of the mode is done with the help of D7
bit of the control word. If D7 = 1, 8255 will be operated in simple I/O Mode and if D7 = 0, 8255
will be operated in BSR (Bit Set Reset) Mode.

__
Department of Electronics & Communication Engineering

8085 123

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Fig-9.6: Control Word of 8255 Peripheral

 In BSR Mode we can access each bit of PORT C individually. In BSR Mode, the control word is
shown in Fig-9.7.

Fig-9.7: Control Word of 8255 Peripheral for BSR mode

There is a 26 pin connector which is used to access port A, port B, port C of 8255 IC in the SDA85
Trainer Kit. The pin connection details of this connector with the 8255 IC is given in the following
table.

__
Department of Electronics & Communication Engineering

8085 124

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Pin No. of 26 pin connector Connection Description

1 PORT line PC4, IC Pin 13

2 PORT line PC5, IC Pin 12

3 PORT line PC2, IC Pin 16

4 PORT line PC3, IC Pin 17

5 PORT line PC0, IC Pin 14

6 PORT line PC1, IC Pin 15

7 PORT line PB6, IC Pin 24

8 PORT line PB7, IC Pin 25

9 PORT line PB4, IC Pin 22

10 PORT line PB5, IC Pin 23

11 PORT line PB2, IC Pin 20

12 PORT line PB3, IC Pin 21

13 PORT line PB0, IC Pin 18

14 PORT line PB1, IC Pin 19

15 PORT line PA6, IC Pin 38

16 PORT line PA7, IC Pin 37

17 PORT line PA4, IC Pin 40

18 PORT line PA5, IC Pin 39

19 PORT line PA2, IC Pin 2

20 PORT line PA3, IC Pin 1

21 PORT line PA0, IC Pin 4

22 PORT line PA1, IC Pin 3

23 PORT line PC6, IC Pin 11

24 PORT line PC7, IC Pin 10

25 JP1 Pin 2 in 85M & 85H

26 GND

__
Department of Electronics & Communication Engineering

8085 125

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

8255 Port Connector Board – The pins of Port A, Port B and Port C of 8255 in SDA85H/
SDA85M/ SDA86 kits are randomly placed in the 26 pin connector, which is very difficult to
connect to any external board/ device. To avoid this problem we have designed a PCB named 8255
PORT CONNECTOR SDA8085/86 T. KIT with model no. RJ8255PCONN V1.0 to separate these
three ports Port A, Port B and Port C. Basically this board separates and segregates the ports of
8255 in SDA85 Trainer Kit into three 8 pin connectors for Port A, Port B and Port C to ease the
connection of Ports. These board can be used for 8085 as well as 8086 Trainer Kit. In case of 8086
Trainer Kit +5V supply can be provided to any external device by shorting JP1 and +5V pins of J7
connector in 8255 Port Connector Board. Again if any external power supply is connected to the
header pin “EXT PWR_SUPPLY” of the 8255 Port Connector Board, +5V can also be delivered to
any external device by shorting JP2 and+5V pins of J7 connector. If power supply is connected
properly the LED in the board will glow as an indicator. There are three 2 pin headers placed inside
the PWR_OUT section which can be used to provide +5V supply to three different external devices
which are to be interfaced with the 8255 in Trainer Kit. In addition to this there is 26 pin Clip-based
FRC male connector which is to be connected to the 26 pin 8255 Port connector in the Trainer Kit.
The 3D top view of 8255 Port Connector Board is shown in Fig-9.8.

 Fig-9.8: 3D top view of 8255 Port Connector Board

Steps to connect external device via 8255 Port Connector Board:

Step 1: Connect 26 pin 8255 connector on SDA85H/ SDA85M/ SDA86 Trainer Kit with the 26 pin
male FRC connector on 8255 Port Connector Board using a F-F FRC ribbon cable.

Step 2: If SDA85H/ SDA85M Trainer Kit is used, external power supply is connected through EXT
PWR_SUPPLY header on 8255 Port Connector Board and JP2 and +5V pin of J7 connector are to
be shorted to provide +5V to the external device.

__
Department of Electronics & Communication Engineering

8085 126

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Step 3: If SDA86 Trainer Kit is used, external power supply may be used as described in Step 2 or
+5V may be supplied from the Trainer Kit by shorting JP1 and +5V pins of J7 connector on 8255
Port Connector Board. As soon as +5V is connected, the LED will glow on 8255 Board.

Step 4: Now +5V is supplied to the external device via any one of three PWR_OUT headers on
8255 Port Connector Board.

Step 5: Finally one or two or three ports among Port A, Port B and Port C of 8255 Port Connector
Board are connected to the external device as required.

After connecting the external device/ circuitry to the 8085 trainer kit via 8255 Port Connector Board
the hex codes of 8085 assembly language program is to be loaded on the SDA85H/ SDA85M
Trainer Kit to drive the external device/ circuitry according to the program objective.

9.1: Write a program to blink a set of eight LEDs in a particular pattern using 8255 peripheral
chip of SDA85H/ SDA85M Trainer Kit with a time delay of 1 sec.

Eight LEDs are connected to Port B of 8255 IC on 8085 Trainer Kit SDA85H/ SDA85M via 8255
Port Connector Board with current limiting resistors of 220Ω and ICs ULN2803. The necessary
+5V power supply is provided to the external circuitry via 8255 Port Connector Board. Now the hex
codes of assembly language program is loaded in the memory of 8085 microprocessor of SDA85H/
SDA85M Trainer Kit to blink the LEDs with a time delay of 1 sec. As soon as the program loaded
in the memory will be executed, the 8 LEDs will start to blink with a given patterns. To generate a
delay of 1 sec a subroutine is written for 8085 microprocessor. The calculation of this delay
subroutine is given below.

The crystal of 6.144 MHz is connected to the SDA85H/ SDA85M Trainer Kit.

Therefore operating frequency of 8085 = (6.144 / 2) MHz = 3.072 MHz.

As a result every T-state becomes 0.325 µs i.e. T = 0.325 µs.

The delay subroutine along with no. of T states corresponding to each instruction is given below
where BC register pair will be loaded with a 16-bit initial value and this value is unknown initially.
Depending upon this value of BC register pair the subroutine will create a delay of 1 sec. Let the
initial value of BC pair is n which has been calculated as follows.

SL. Label Mnemonics of Delay Subroutine No. of T States

1 DELAY: LXI B, n 10 T

2 AGAIN: NOP 4 T

3 NOP 4 T

__
Department of Electronics & Communication Engineering

8085 127

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

4 NOP 4 T

5 NOP 4 T

6 NOP 4 T

7 NOP 4 T

8 DCX B 6 T

9 MOV A,C 4 T

10 ORA B 4 T

11 JNZ AGAIN 10 T / 7 T

12 RET 10 T

Calculation:

Total time taken by the subroutine = 10T + n x 48T – 3T + 10T = (48n + 17) x 0.325 µs

According to the criterion of the program the delay subroutine should be 1 sec.

.·. (48n + 17) x 0.325 µs = 106 µs

or, 48n + 17 = 3076923

or, 48n = 3076906

.·. n = 64102 = FA66H

Now the delay subroutine will be same with a initial value of FA66H to be stored in BC register
pair.

As port B of 8255 is being interfaced with the LED circuit to send the required bit patterns, the Port
B will be operated as output port in Mode 0 of simple I/O mode. For that purpose the control word
will be evaluated as follows.

Fig-9.9: PORT B of 8255 selected as an output PORT in Mode 0 in Group B using simple I/O Mode

__
Department of Electronics & Communication Engineering

8085 128

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

As we have used SDA85H for implementing this program, the address range selected here is F4H –
F7H. Accordingly the address of Port B and control register becomes F5H and F7H respectively.
Here the blinking pattern we have chosen that all LEDs will be on simultaneously and after 1 sec
delay all LEDs will be off simultaneously, which results the two bit patterns as FFH and 00H
respectively. The entire assembly language program is given below.

Assembly language program 9.1:

SL. Addresses Label Mnemonics No. of Bytes Hex Codes

1 8000 MVI A,80 2 3E 80

2 8002 OUT F7 2 D3 F7

3 8004 MVI A,FF 2 3E FF

4 8006 LOOP: OUT F5 2 D3 F5

5 8008 MOV D,A 1 57

6 8009 CALL DELAY 3 CD 12 80

7 800C MOV A,D 1 7A

8 800D CMA 1 2F

9 800E JMP LOOP 3 C3 06 80

10 8011 HLT 1 76

11 8012 DELAY: LXI B,FA66 3 01 66 FA

12 8015 AGAIN: NOP 1 00

13 8016 NOP 1 00

14 8017 NOP 1 00

15 8018 NOP 1 00

16 8019 NOP 1 00

17 801A NOP 1 00

18 801B DCX B 1 0B

19 801C MOV A,C 1 79

20 801D ORA B 1 B0

21 801E JNZ AGAIN 3 C2 15 80

22 8021 RET 1 C9

TOTAL = 34

__
Department of Electronics & Communication Engineering

8085 129

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

 9.2: Write a program to display a single digit BCD number (0 to 9) in a 7-segment display using
8255 peripheral chip of SDA85H/ SDA85M Trainer Kit. Assume that the single digit number will
be stored at the address 8060H.

Before implementing this experiment along with program the detail explanation of 7-segment
display is required. A 7-segment display is commonly used in electronic display devices for decimal
numbers from 0 to 9 and in some cases, basic characters. The use of LEDs in seven-segment
displays made it popular, bright and clear, easy to interface and cost effective. There are 7
illuminating segments (named as a, b, c, d, e, f, g) and a dot (named as DP) in a 7-segment display.
Corresponding to each segment and dot there is a LED inside the 7-segment display. A particular
segment in a 7-segment display becomes illuminated if the corresponding LED of that segment
glows due to the forward biasing. The pin-out of a 7-segment display is shown in Fig-9.10.

 Fig-9.10(a): Pin-out of Common Anode Fig-9.10(b): Pin-out of Common Cathode
 7-segment display 7-segment display

Basically there are two types of 7-segment display namely 1) Common Anode 7-segment display
and 2) Common Cathode 7-segment display.

1) Common Anode 7-segment display – In this construction all the anodes of eight LEDs are
connected together to form a common terminal CA as shown in Fig-9.8(a). Other eight cathode
terminals are connected to eight pins namely a, b, c, d, e, f, g and DP. The internal schematic
diagram of a common anode 7-segment display is shown in Fig-9.11.

Fig-9.11: Internal schematic diagram of common anode 7-segment display

__
Department of Electronics & Communication Engineering

8085 130

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

2) Common Cathode 7-segment display – In this construction all the cathodes of eight LEDs are
shorted together to form a common terminal CC as shown in Fig-9.8(b). Other eight anode
terminals are connected to eight pins namely a, b, c, d, e, f, g and DP. The internal schematic
diagram of a common cathode 7-segment display is shown in Fig-9.12.

Fig-9.12: Internal schematic diagram of common cathode 7-segment display

Suppose in this case PORT B of 8255 is selected for sending the 8-bit data to display a single digit
BCD number on a 7-segment display and the address range F0 – F3 is selected for different PORT
registers and Control register. For this purpose the following circuit is to be connected. The
interfacing circuit to display a single digit BCD number on a 7-segment display through 8255 chip,
is shown in Fig-9.13.

Fig-9.13: Circuit diagram to display single digit BCD on 7-segment display using 8255

__
Department of Electronics & Communication Engineering

8085 131

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

Here PORT B is used as an output PORT for sending corresponding code to 7-segment display for
the single digit number in the range of 0 to 9. Hence the control word of 8255 is given in Fig-9.14.

Fig- 9.14 : PORTB of 8255 selected as output PORT in Mode 0 in Group B using simple I/O Mode

So we can see from Fig-9.9 that the control word will be 80H to operate PORT B as an output
PORT and this control word is to stored inside the control register using address F3. After storing
the specified control word, the PORT B is configured as an output PORT and ready to send data to
the inputs of the LATCH 74373. The LE pin should be high and OE pin should be low to transfer
a 8-bit data from its input pins (D1, D2, D3,............) to output pins (Q1, Q2, Q3,..............) and
depending on these data the single digit number is glown on the 7-segment display. Now there are
10 8-bit codes corresponding to 10 single digit numbers which will be displayed and because of that
these codes are to be stored in a look-up table which is basically a block of memory to store these
code for 7-segment display. Suppose the look-up table starts from memory address 8050 to 8059
and is shown in the following Fig-9.15. The single digit number to be displayed, should be stored in
the memory address 8060.

PB7 PB6 PB5 PB4 PB3 PB2 PB1 PB0
Code in

Hex

Memory Addresses
to store the codes
for 7-seg display

Displayed Single
Digit NumberDP g f e d c b a

0 0 1 1 1 1 1 1 3F 8050 0

0 0 0 0 0 1 1 0 06 8051 1

0 1 0 1 1 0 1 1 5B 8052 2

0 1 0 0 1 1 1 1 4F 8053 3

0 1 1 0 0 1 1 0 66 8054 4

0 1 1 0 1 1 0 1 6D 8055 5

0 1 1 1 1 1 0 1 7D 8056 6

0 0 0 0 0 1 1 1 07 8057 7

0 1 1 1 1 1 1 1 7F 8058 8

0 1 1 0 1 1 1 1 6F 8059 9

F ig- 9.15 : Look-up table for single digit number display on a 7-segment display

__
Department of Electronics & Communication Engineering

8085 132

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

The flowchart of the assembly language program for 8085 kit to display a single digit number on a
7-segment display is shown in the following Fig-9.16.

Fig-9.16: Flowchart of the program to display a single digit number on a 7-segment display

Assembly Language Program 9.2:
 Note: 1) Look-up table for 7-segment display codes starts from the address 8050
 2) The single digit BCD number to be displayed, is stored at address 8060

SL. Addresses Label Mnemonics No. of Bytes Hex Codes

1 8000 MVI A, 80 2 3E 80

2 8002 OUT F3 2 D3 F3

3 8004 LXI H, 8060 3 21 60 80

4 8007 MOV E, M 1 5E

5 8008 MVI D, 00 2 16 00

6 800A LXI H, 8050 3 21 50 80

7 800D DAD D 1 19

8 800E MOV A, M 1 7E

9 800F OUT F1 2 D3 F1

10 8011 RST 5 1 EF

TOTAL = 18

__
Department of Electronics & Communication Engineering

8085 133

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

10. Familiarization with 8051 Simulator

The simulation of 8051 microcontroller programs are done by using a simulation software “Keil”.
Keil is a well-known integrated development environment (IDE) used primarily for embedded
systems software development. It is developed by ARM, a leading provider of semiconductor
intellectual property. Here's an overview of Keil highlighting its key features and functionalities:

1. IDE Interface : Keil provides a user-friendly interface that integrates various tools required for

embedded systems development. It includes a text editor, project manager, and debugger, among
other tools, all within a unified environment.

2. Support for ARM Architecture : Keil primarily targets the ARM architecture, which is widely

used in embedded systems ranging from microcontrollers to sophisticated system-on-chip (SoC)
designs. It supports various ARM cores and families, including Cortex-M, Cortex-R, and
Cortex-A series processors.

3. Compiler and Debugger : Keil includes a robust C/C++ compiler optimized for ARM

architectures, capable of generating highly efficient code for embedded applications. It also
features a powerful debugger that supports source-level debugging, real-time data visualization,
and various debugging techniques like breakpoints, watch points, and trace.

4. Peripheral Simulation : Keil provides simulation capabilities that allow developers to simulate

the behavior of various peripherals commonly found in microcontrollers and other embedded
devices. This feature is valuable for testing and debugging embedded software without the need
for physical hardware.

5. RTOS Support : Keil offers support for various real-time operating systems (RTOS), including

popular ones like FreeRTOS and RTX (Keil's own RTOS). This allows developers to efficiently
develop and debug embedded applications that utilize multitasking and real-time scheduling.

6. Extensive Device Support : Keil provides extensive device support, including a wide range of

microcontrollers and development boards from various manufacturers. This makes it easier for
developers to select the appropriate target device for their projects and ensures compatibility
with Keil's tool chain.

7. Middleware and Libraries : Keil offers a suite of middleware components and libraries that

simplify common tasks in embedded systems development. This includes libraries for
communication protocols (e.g., UART, SPI, I2C), file systems, graphics, and more.

__
Department of Electronics & Communication Engineering

8051 134

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

8. Integration with ARM Ecosystem : As part of ARM's ecosystem, Keil seamlessly integrates

with other ARM development tools and technologies, such as ARM Development Studio,
CMSIS (Cortex Microcontroller Software Interface Standard), and ARM's IP portfolio.

9. Community and Support : Keil has a large user community and extensive documentation,

tutorials, and forums available to developers. This ensures that developers have access to
resources and assistance when using the IDE and tackling embedded systems development
challenges.

Overall, Keil is a comprehensive IDE used for embedded systems development, offering powerful
tools, extensive device support, and integration with ARM's ecosystem to streamline the
development process for embedded applications. In addition to these supports it also supports
8051, 8052, 8031 microcontroller that assembly language as well as C programming for 8051
microcontroller can be executed using this IDE. Keil is only compatible with Windows operating
system, but it can also be installed in Ubuntu Linux using “Wine” application.

10.1 Installation of Keil Uvision

Installation on Windows:
Download Keil uVision5 and install the free version or Trial version of this software. Only
limitation of this Trial version is that maximum 2KB of program code can be compiled and
executed in Keil Trial Version.

Installation on Ubuntu:
Step1 – Install the application Wine using the following command.

$ sudo apt install wine

Step2 – After successful installation of wine, configure it running the following command.

$ winecfg

Step3 – Now copy the setup file of Keil IDE in a director, navigate into that directory and execute
the following command.

$ wine KeilSetupFile.exe

Step4 – Continue the installation procedure as Windows.

__
Department of Electronics & Communication Engineering

8051 135

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

10.2 How to Use: The screenshots of Keil uVision5 are shown in Fig-10.1.

Fig-10.1: Screenshot of Keil after opening first time

To write a 8051 program in Keil a directory or folder should be created with relevant name. A
project file with relevant name and .uvproj extension should be created in the same directory.
Generally the project name and the name of the folder are kept same. After creating the project the
program of 8051 can be written in either assembly language or C language. The program written in
assembly/ C language should be saved on an file with .asm/ .c extension. Now this file is to be
added to the created project to execute it. The step-by-step procedure of writing 8051 assembly
language program in Keil is given below.

10.3 Procedure to write 8051 assembly language program:

➢ Click the option “New uVision Project” under the Project menu, enter a name of the project
(normally the same name of the directory) and save the project file with .uvproj in the previously
created directory.

➢ A window will appear where the specific microcontroller from a list of microcontrollers should
be selected. In this laboratory AT89S51 or AT89S51 should be chosen as device.

➢ After that a message “Copy ‘STARTUP.A51’ to Project Folder and Add File to Project” will
appear where ‘No’ option is to be selected for program in assembly language and ‘Yes’ option to
be selected for program in C language.

➢ After clicking ‘No’ option a ‘Target’ option will be generated in the project window at left. If we
expand it, ‘Source Group 1” option will appear as shown in Fig-10.2.

__
Department of Electronics & Communication Engineering

8051 136

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

Fig-10.2: Screenshot of Keil after creating a new project

➢ Now right click the option ‘Target’ and select ‘Option for Target Target1’ to configure the
following options for the project.

1. Verify the microcontroller as AT89S51/ AT89S52 under ‘Device’ Tab
2. Change the crystal frequency in the text box ‘Xtal (MHz)’ as per the crystal used in your

circuit. For example – if the crystal of 11.0592MHz is used, enter the frequency in the
text box as 11.0592.

3. Check the option “Create HEX File” under ‘Output’ Tab.
After selecting the above mentioned configurations, press ok button.

➢ Now open a new file from ‘File’ menu which will appear as in Fig-10.3.

Fig- 10 .3: Screenshot of Keil after opening a new file

__
Department of Electronics & Communication Engineering

8051 137

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

➢ Now the assembly language code is written in the white space and saved with the same filename
of project with an extension .asm in the same directory where the project file has been stored
also. As soon as the file is saved with .asm extension, the text highlighting is activated in the
program code which helps to find out the syntax error. A sample program with text highlighting
in Keil is shown in Fig-10.4. In Keil every assembly language program should be started with
the directive “ORG Starting Address of the Program” and terminated with another directive
“END”.

Fig-10.4: Sample 8051 assembly language program with text highlighting

➢ Finally this .asm file will be added to the project by right clicking on the ‘Source Group 1’ and
selecting the option ‘Add Existing Files to Group Source Group 1’. The program writing is
complete and now the program can be compiled, built and executed.

➢ Comment inside program: To give a comment inside the program, the comment line must be
preceded by ‘/*’ and terminated by ‘*/’. The simulator excludes these comment lines during
debug. Giving comment in the program is a good practice to specify explanation of the program.
This practice helps the programmer to recapitulate the logic of a complicated program in future.

➢ Storing Data inside Program Memory: To store the data inside program memory prior to the
execution of the program the following assembler directives should be used.

ORG Address of the Memory from where data can be stored consecutively
DB Data1, Data2, Data3, Data4, …………….

DB (Data Byte) is a directive which stores all the 8-bit data (Data1, Data2, Data3,…..)
consecutively starting from the address specified by “ORG”.

__
Department of Electronics & Communication Engineering

8051 138

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

ORG 200
DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H,7FH, 6FH

In the above example the simulator will load ten 8-bit data (3FH, 06H, 5BH, 4FH, 66H, 6DH,
7DH, 07H,7FH, 6FH) consecutively starting from memory location 200 (in decimal) in the
program memory.

➢ Keil is not case-sensitive. So the program code can be written either in capital or small letter.

➢ In Keil the decimal value is represented only by number like 15,100 etc and Hexadecimal value
is represented by the number followed by ‘H’ like 0FH, 64H etc.

➢ In Hexadecimal representation, if the first digit is alphabet, zero must be appended before it to
avoid the syntax error in Keil. For example – MOV R2, #0E2H and MOV R2, #2EH.

10.4 Procedure to Build/ Rebuild 8051 project:

➢ After completing the program writing the project is to be built by clicking the ‘Build’ option in
Keil as shown in Fig-10.5. Actually Build will perform multiple tasks like generation of List file
(.lst), creation of object file (.obj), generation of Hex file (.hex) etc. In addition to this it will
check errors in program. If 0 warning 0 error occurs, Build process is completed successfully.

➢ After completion of Build process a list file with .lst extension is created into the folder
“Listings” and a Hex file is created into the folder “Objects”. The list file contains the entire
program code along with the memory mapping, opcodes, operands etc. The Hex file contains the
program code in Hexadecimal numbers. Basically this Hex file is used by the Programmer
Software to burn the program code into the microcontroller chip.

➢ If there is some modification in the program, the project should be rebuilt by using the option
‘Rebuilt’ as shown in Fig-10.5. This will modify all the files like list file, hex file etc.

Fig-10.5: Build and Rebuild option in Keil

__
Department of Electronics & Communication Engineering

8051 139

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

10.5 Procedure to execute 8051 program:

➢ To execute the program in Keil the option “Start/ Stop Debug Session” should be clicked to start
Debug Session. In Keil any program can execute only in this session. That’s why to run any
program we must enter into this Debug Session first.

➢ If the program involves any peripherals like I/O ports, then the corresponding I/O port (Port 0,
Port1, Port2, Port3) should be selected from Peripherals → IO Ports. It will display the I/O port
wizard in front of the user as shown in Fig-10.6.

Fig-10.6: Debug Session in Keil
From the above figure we can see 8 pins of Port 2 is marked with 🗸 which indicates On and if 🗸
is not present, it indicates Off at that pin.

➢ Now the Run button is to be clicked to execute the program. During execution the port wizard
functions according to the program.

➢ In 8051 most of the time the programs run indefinitely. Therefore Stop button should be clicked
to finish the program execution.

➢ Finally click ‘Start/ Stop Debug Session’ button once again to return back to the Editor Mode of
Keil where any modification of the program may be done.

__
Department of Electronics & Communication Engineering

8051 140

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

10.6 Procedure to store Data inside RAM during program execution: We know 8051 has 128
bytes of onchip RAM. To access 128 bytes (27 bytes) of RAM seven address lines are required.
So each address of onchip RAM of 8051 is 8 bits long. The address range of 8051 RAM is 00H
– 7FH. The address range 00H – 1FH is dedicated for four memory banks namely Bank0,
Bank1, Bank2 and Bank3, the address range 20H – 2FH is used as bit addressable memory and
30H – 7FH is used as scratchpad where programmer can store some data temporarily as per his
requirement.

Keil has given the facility to store data inside scratchpad of onchip RAM by the use of the
following process.

➢ Open debug session by clicking the button “Start/ Stop Debug Session” as shown in Fig-10.7.

Fig-10.7: Debug Session in Keil

➢ Now click the tab ‘Memory1’ at the bottom right corner of the debug window which will open
the memory window as shown in Fig-10.8.

Fig-10.8: Memory window for 8051

__
Department of Electronics & Communication Engineering

8051 141

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

➢ In this memory window you can insert data for onchip RAM as well as for Program ROM (flash
memory). To store data inside onchip RAM we have to follow insert the syntax into the text box
of the memory window as given below.

D:8 bit address in Hexadecimal

 For example – D:50H which will allow to insert data starting from the address 50H onward.

Similarly to insert data into the onchip PROM the syntax “C:16bit address in Hexadecimal”
should be given in the text box. For example C:0000H will allow to store data starting from the
memory address 0000H.

➢ After entering the above mentioned syntax when the enter button is pressed, the contents of all
the addresses from the given address will be displayed in the memory wizard. Now the content
which is to be changed, is double clicked to select the particular address inside the RAM. The
content of the selected location is altered as per the need of the user and finally ‘Enter’ button is
pressed to save the data into the selected memory location. The sequences to store FFH into the
memory location 53H inside the scratchpad is shown in Fig-10.9, Fig-10.10 and Fig-10.11
respectively.

F ig-10.9: Memory location 53H is selected by double click

__
Department of Electronics & Communication Engineering

8051 142

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

F ig-10.10: Content of memory location 53H has been changed to FFH

F ig-10.11: New data FFH has been saved into memory location 53H after pressing ‘Enter’

__
Department of Electronics & Communication Engineering

8051 143

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

11. Procedure to burn 8051 microcontroller

8051 microcontroller can decode only binary numbers or machine level language. That’s why only
the hex codes should be written into the onchip program memory or flash memory. The Keil
simulator converts the assembly language codes to its equivalent hex codes which are stored into a
Hex file with .hex extension. Now this Hex file is used by the programmer software to dump all the
hex codes into the flash memory of the 8051 microcontroller. The procedure to dump the hex codes
of a program onto the flash memory of a microcontroller is called burning/ programming the
microcontroller chip.

11.1: Hardware Description: For this purpose we require a programmer device which will be
connected to the computer via Serial port or USB port. After successful connection with PC a
burner software will be used to dump the hex codes to the microcontroller through the programmer
device. Here we have used USBASP device and ProgISP software to burn the 8051 microcontroller
chip. The USBASP circuit board is shown in Fig-11.1.

Fig-11.1: 8051 USBASP Programmer board

There are 6 pins in the circuit board of USBASP programmer shown above namely Vcc (+5V of
USB port of PC), GND, MOSI (Master Out Slave In), MISO (Master In Slave Out), SCK and
RESET. Now the 8051 microcontroller which is to be burnt is connected with the USBASP and
+5V power supply as below.

SL Pins of 8051 Connection SL Pins of 80511 Connection

1 Vcc, IC pin 40→ Vcc of USBASP 5 MISO, IC pin 7→ MISO of USBASP

2 GND, IC pin 20→ GND of USBASP 6 SCK, IC pin 8→ SCK of USBASP

3 EA′, IC pin 31→ Vcc of USBASP 7 RESET, IC pin 9→ RESET of USBASP

4 MOSI, IC pin 6→ MOSI of USBASP 8 XTAL2, IC pin 18→
XTAL1, IC pin 19→

Crystal connected
between these 2 pins

__
Department of Electronics & Communication Engineering

8051 144

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

To establish the above mentioned connection an 8051 microcontroller mounting board
(KSR805152-MB1) has been designed where a ZIF socket has been introduced into the board to
easily connect and disconnect the 8051 chip frequently. The circuit diagram of this mounting board
is shown in Fig-11.2.

Fig-11.2: Circuit diagram of KSR805152-MB1 mounting board

AT89S51 microcontroller has ISP (In-System Programming) feature which enables the burner to
flash the memory of the microcontroller when it is connected to the actual system or in circuit. That
means, it is not required to pull out the microcontroller from the system for burning. Keeping the
microcontroller chip into the system, it is possible to flash the program memory. The USBASP
programmer along with the KSR805152-MB1 mounting board can do the In-System Programming.
Moreover the KSR805152-MB1 board gives the facility to provide power from external supply
through a PBT connector. There are four jumpers namely JP1, JP2, JP3, JP4 having different
functionalities given in the following table.

__
Department of Electronics & Communication Engineering

8051 145

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Purposes Status of the jumpers

To burn the 8051/ 8052 chip disconnecting from
system

JP1 → shorted
JP2 → open
JP3 → shorted/ open
JP4 → open (RESET circuit disconnected)

To perform ISP (In-System Programming) on
8051/ 8052 chip
Note: External power supply must be
disconnected from PBT connector

JP1 → shorted
JP2 → shorted
JP3 → shorted
JP4 → open (RESET circuit disconnected)

Run the 8051/ 8052 chip along with its I/O
circuits from USB power supply
Note: External power supply must be
disconnected from PBT connector

JP1 → shorted
JP2 → shorted
JP3 → shorted
JP4 → shorted (RESET circuit connected)

Run the 8051/ 8052 chip along with its I/O
circuits from external power supply
Note: External power supply must be connected
at PBT connector

JP1 → open
JP2 → shorted
JP3 → shorted
JP4 → shorted (RESET circuit connected)

The Mounting Board has a RESET circuit which is used to reset the 8051 microcontroller. When
the push button switch is pressed momentarily, the microcontroller will be reset. There are three 8
pin jumper headers connected to port 0, port 2, port 3 and a 4 pin jumper header connected to port1
(P1.0 – P1.3). These jumper headers are utilized to connect the ports of the microcontroller to the
external circuitry. A 6 pin jumper header connected to MOSI, MISO, SCK, RESET, Vcc and GND
of the microcontroller chip is used to flash/ burn the program memory of the 8051 chip with the
help of USBASP burner. The KSR805152-MB1 and Embeddinator’s 8051/ 8052 Mounting Board
are shown in Fig-11.3(a) and Fig-11.3(b) respectively.

Fig-11.3(a): KSR805152-MB1 Fig-11.3(b): Embeddinator 8051/ 8052
8051 microcontroller mounting board microcontroller mounting board

__
Department of Electronics & Communication Engineering

8051 146

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

11.2: Software Description: The software used to burn 8051 program into the chip is ProgISP. It is
a software tool commonly used for programming microcontrollers, particularly those manufactured
by Atmel, such as 8051, 8052, AVR series microcontrollers. It provides an interface for users to
program and configure microcontrollers for various applications. ProgISP typically supports a range
of programming hardware, such as ISP (In-System Programming) programmers, which allow users
to program microcontrollers while they are already installed in a circuit. The software often
provides features like reading, writing, verifying, and erasing microcontroller memory, as well as
configuring fuses and other settings. It's a crucial tool for embedded systems developers and
hobbyists working with Atmel microcontrollers. This software is only compatible in Windows
operating system. The procedure to install the software is given below.

Step1 – To run ProgISP in Windows it is necessary to install the Windows Driver first. If the driver
is not installed, the USBASP programmer device is not detected under Device Manager even after
the device is connected to PC via USB port. After the successful installation of the Windows Driver,
‘Usbasp’ is automatically displayed under ‘LibUSB’ tab in the Device Manager of Windows as
shown in Fig-11.4.

F ig-1 1 .4: USBasp device is detected after the installation of Windows Driver of ProgISP

The windows driver for ProgISP is normally found inside the win-driver folder of ProgISP as
shown in Fig-11.5.

F ig-1 1 .5: Windows Driver of ProgISP inside the folder win-driver

Open the folder win-driver and install the driver software for your operating system (Windows 10/
Windows 7).

__
Department of Electronics & Communication Engineering

8051 147

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Step2 – Now ProgISP software can be opened directly by double clicking on the progisp.exe file as
shown in Fig-11.5. To do this the directory containing progisp.exe along with other files should be
copied into the system and double click on progisp.exe to open and run the software. The screenshot
of the software is shown in Fig-11.6. The PRG ISP & USB ASP buttons should be bright. If it’s
greyed out , then check the USB cable connection & the driver installation.

Fig-11.6: ProgISP Software after opening

11.3 Procedure to burn hex code using ProgISP:

Step1 – Select the target chip (AT89S51 for 8051 microcontroller or AT89S52 for 8052
microcontroller) from the “Select Chip “ drop down menu and ensure that following options are
enabled as shown in Fig-11.7. If you enable the LOCK CHIP button , others can’t make a copy of
your chip.

1) Verify Signature 2) Chip Erase 3) Program Flash 4) Verify Flash

Fig-11.7: Target chip selected with some options enabled

__
Department of Electronics & Communication Engineering

8051 148

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Step2 – Click on File → Load Flash or directly click on the button ‘Load Flash’ at the right side
panel and browse to the location of the Hex file you have created using Keil as shown in Fig-11.8
and Fig-11.9 respectively.

Fig-11.8: Load Flash button to select and load Hex file

Fig-11.9: Browse the Hex file

Step3 – After selecting the Hex file click the button ‘Auto’ to flash the program memory of 8051
chip with the Hex file selected. Finally a message “Erase, Write Flash, Verify Flash successfully
done” appears to indicate that 8051 program has been loaded into the 8051 chip successfully as
shown in Fig-11.10 and Fig-11.11 respectively.

__
Department of Electronics & Communication Engineering

8051 149

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Fig-11.10: Auto button to flash the hex code into the microcontroller chip

Fig-11.11: Hex file is burnt successfully

__
Department of Electronics & Communication Engineering

8051 150

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12. Programs on Arithmetic and Logical Operations

12.1: Write a program to add two 8-bit binary numbers which are stored at the memory locations
50H and 51H and also store the result of addition into memory locations 52H and 53H where
52H and 53H will hold lower and higher byte respectively.

Method 1: In case of addition of two 8-bit binary numbers, the maximum result will be 1FE when
both of the numbers are maximum i.e. FF (FF + FF = 01FE). Hence it is clear that we need an extra
bit to store the result which implies that two bytes are required to store the result where carry part
will constitute the higher byte and the remaining 8-bit of the result will constitute lower byte. To
store this two bytes of result two consecutive memory locations with addresses 52H and 53H are
required.

Assembly Language Program 12.1 (Method 1):

SL. Label Instructions of 8051

1 MOV B,#00H

2 MOV R0,#50H

3 MOV A,@R0

4 INC R0

5 ADD A,@R0

6 JNC SKIP

7 INC B

8 SKIP INC R0

9 MOV @R0,A

10 INC R0

11 MOV @R0,B

12 HERE SJMP HERE

Method 2: In this alternate method the addition is done using “ADD A,Data” instruction, but carry
is considered using “ADDC A,Data” instruction instead of conditional branching instruction “JNC”.

__
Department of Electronics & Communication Engineering

8051 151

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.1 (Method 2):

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 INC R0

4 ADD A,@R0

5 INC R0

6 MOV @R0,A

7 MOV A,#00H

8 ADDC A,A

9 INC R0

10 MOV @R0,A

11 HERE SJMP HERE

Result of Program 12.1:
SET1 ►
Input

Mem. Address Content Remarks

50 0A No1

51 DD No2

SET2 ►
Input

Mem. Address Content Remarks

50 FF No1

51 FE No2

Output

Mem. Address Content Remarks

52 E7 Lower Byte of Result

53 00 Higher Byte of Result

Output

Mem. Address Content Remarks

52 FD Lower Byte of Result

53 01 Higher Byte of Result

__
Department of Electronics & Communication Engineering

8051 152

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12.2: Write a program to add ten 8-bit binary numbers which are stored at the memory locations
starting from 50H to 59H and also store the result of addition at memory locations 5AH and
5BH whereas 5AH and 5BH will hold the lower and higher byte of the result respectively.

It is to determine first, what will be the maximum value of the result of ten 8-bit numbers addition
so that it can be decided that how many bytes are required to store the result. Naturally the result of
addition will be maximum, if all the ten 8-bit numbers having their maximum value i.e FF.
Hence FF + FF + FF + FF + FF + FF + FF + FF + FF + FF = 9F6 i.e 09F6

Therefore it is clear that atleast 2 bytes are required to store the result of ten 8-bit numbers addition.
We have to use two consecutive memory locations – one 5AH and another 5BH for storing the
lower byte and higher byte of the result respectively.

The concept of this program is that addition should be performed repeatedly for n times for addition
of n no. of 8-bit numbers and a register is to be taken for counting the no of carries occurred for
these multiple no. of addition. In this case register B has been taken to hold how many times the
carry occurred during 9 times addition of ten 8-bit numbers. Each time if a carry occurs the content
of register B is to be incremented by one. The ten 8-bit numbers are stored in consecutive memory
locations starting from 50H to 59H and the lower byte and the higher byte of the result will be
stored at address 5AH and 5BH respectively, which is shown pictorially in the following Fig-12.1.

Addresses Contents

50 No 1

51 No 2

52 No 3

53 No 4

54 No 5

55 No 6

56 No7

57 No 8

58 No 9

59 No 10

5A Lower Byte of Result

5B Higher Byte of Result

Fig-12.1: Ten 8-bit numbers and the result of addition are stored consecutively from 50H

__
Department of Electronics & Communication Engineering

8051 153

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.2:

SL. Label Instructions of 8051

1 MOV R2,#09H

2 MOV B,#00H

3 MOV R0,#50H

4 MOV A,@R0

5 REPEAT INC R0

6 ADD A,@R0

7 JNC SKIP

8 INC B

9 SKIP DJNZ R2,REPEAT

10 INC R0

11 MOV @R0,A

12 INC R0

13 MOV @R0,B

14 HERE SJMP HERE

Result of Program 12.2:
SET1 ►
Input

Mem. Address Content Remarks

50 05 No1

51 0D No2

52 DD No3

53 AA No4

54 12 No5

55 32 No6

56 01 No7

57 0A No8

58 1F No9

8059 0A No10

Output

Mem. Address Content Remarks

5A 11 Lower Byte of Result

5B 02 Higher Byte of Result

__
Department of Electronics & Communication Engineering

8051 154

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

SET2 ►
Input

Mem. Address Content Remarks

50 05 No1

51 06 No2

52 07 No3

53 08 No4

54 09 No5

55 0A No6

56 0B No7

57 0C No8

58 0D No9

59 0E No10

Output

Mem. Address Content Remarks

5A 5F Lower Byte of Result

5B 00 Higher Byte of Result

12.3: Write a program to add two 64-bit binary numbers which are stored at the memory
locations starting from 50H onward and the memory locations starting from 60H onward. Store
the result of the addition starting from memory location 70H onward.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 50H to 57H and the second number starts
from 60H to 67H. Moreover, it takes at least 9 consecutive bytes to store the result of addition
starting from 70H to 78H as shown in Fig-12.2.

 1St Number 2nd Number
Address Content Address Content

50 Byte1 60 Byte1

51 Byte2 61 Byte2

52 Byte3 62 Byte3

53 Byte4 63 Byte4

54 Byte5 64 Byte5

55 Byte6 65 Byte6

56 Byte7 66 Byte7

57 Byte8 67 Byte8

__
Department of Electronics & Communication Engineering

8051 155

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Addition
Address Content

70 Byte1

71 Byte2

72 Byte3

73 Byte4

74 Byte5

75 Byte6

76 Byte7

77 Byte8

78 Byte9

Fig-12.2: Memory mapping of two 64-bit numbers and their result of addition

During the addition of two 8-byte numbers, addition of each bytes from two numbers are performed
starting from the lowest byte to highest byte successively i.e. addition is done first in between Byte1
of the two numbers, then between Byte2 and so on. If carry occurs after the addition of two Byte1
of two numbers, that carry will be propagated into the addition of two Byte2 of the two numbers.
Similarly if there is carry during the addition of two Byte2, that carry will be propagated into the
third bytes of the two numbers. This will go on until highest byte i.e. Byte8 addition is done. In this
case, one thing is important to consider that there is no chance of occurring any carry from the
previous stage during the addition of lowest bytes i.e. Byte1. Hence before using ADDC instruction
for adding Byte1 of the two numbers, the carry flag must be zero. In this program addition will be
performed for 8 times. Therefore the register R2 should be taken as counter.

But the problem here is the shortage of memory pointing registers, because the registers R0 and R1
of Bank0 are already being consumed to point the starting address of the two memory blocks where
minuend and subtrahend are stored. To point the memory block of the result of the addition it is
required another memory pointing register, which is served by the register R0 of Bank2. Therefore
in this program it is required to switch the banks of 8051 using the two flags RS0 and RS1 of PSW
(Program Status Word). Switching of the banks from Bank0 to Bank2 is done with the help of the
instruction “SETB PSW.4” and the switching from Bank2 to Bank0 is performed by using “CLR
PSW.4”.

__
Department of Electronics & Communication Engineering

8051 156

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.3:

SL. Label Instructions of 8051

1 MOV R2,#08H

2 SETB PSW.4

3 MOV R0,#70H

4 CLR PSW.4

5 MOV R0,#50H

6 MOV R1,#60H

7 CLR C

8 REPEAT MOV A,@R0

9 ADDC A,@R1

10 INC R0

11 INC R1

12 SETB PSW.4

13 MOV @R0,A

14 INC R0

15 CLR PSW.4

16 DJNZ R2,REPEAT

17 MOV A,#00H

18 ADDC A,#00H

19 SETB PSW.4

20 MOV @R0,A

21 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 157

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.3:
SET1 ►
Input
 No1 No2

Addr Content Remarks Addr Content Remarks

50 88 Byte1 60 01 Byte1

51 99 Byte2 61 02 Byte2

52 AA Byte3 62 03 Byte3

53 BB Byte4 63 04 Byte4

54 CC Byte5 64 05 Byte5

55 DD Byte6 65 06 Byte6

56 EE Byte7 66 07 Byte7

57 FF Byte8 67 08 Byte8

SET2 ►
Input
 No1 No2

Addr Content Remarks Addr Content Remarks

50 10 Byte1 60 08 Byte1

51 20 Byte2 61 07 Byte2

52 30 Byte3 62 06 Byte3

53 40 Byte4 63 05 Byte4

54 50 Byte5 64 04 Byte5

55 60 Byte6 65 03 Byte6

56 70 Byte7 66 02 Byte7

57 80 Byte8 67 01 Byte8

 Output

Result

Addr Content Remarks

70 89 Byte1

71 9B Byte2

72 AD Byte3

73 BF Byte4

74 D1 Byte5

75 E3 Byte6

76 F5 Byte7

77 07 Byte8

78 01 Byte9

 Output
Result

Addr Content Remarks

70 18 Byte1

71 27 Byte2

72 36 Byte3

73 45 Byte4

74 54 Byte5

75 63 Byte6

76 72 Byte7

77 81 Byte8

78 00 Byte9

__
Department of Electronics & Communication Engineering

8051 158

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12.4: Write a program to subtract two 64-bit binary numbers which are stored at the memory
locations starting from 50H onward and the memory locations starting from 60H onward. Store
the result of the subtraction starting from memory location 70H onward.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 50H to 57H and the second number starts
from 60H to 67H. In this case the 2nd number (subtrahend) will be subtracted from the 1st number
(minuend). Moreover, it takes 8 consecutive bytes to store the magnitude of the subtraction starting
from 70H to 77H and an extra byte is required to store the polarity of the result into the memory
location 78H as shown in Fig-12.3. If the result is negative, 01H will be stored at 78H to indicate
the negative result and 00H will be stored at the same memory location, if the result is positive.

 Minuend Subtrahend
Address Content Address Content

50 Byte1 60 Byte1

51 Byte2 61 Byte2

52 Byte3 62 Byte3

53 Byte4 63 Byte4

54 Byte5 64 Byte5

55 Byte6 65 Byte6

56 Byte7 66 Byte7

57 Byte8 67 Byte8

Result of Subtraction
Address Content

70 Byte1

71 Byte2

72 Byte3

73 Byte4

74 Byte5

75 Byte6

76 Byte7

77 Byte8

78 00H/01H (Polarity)

Fig-12.3: Memory mapping of two 64-bit numbers and their result of subtraction

__
Department of Electronics & Communication Engineering

8051 159

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

During the subtraction of two 8-byte numbers, subtraction of each byte from two numbers are
performed starting from the lowest byte to highest byte successively i.e. subtraction is done first in
between Byte1 of the two numbers, then between Byte2 and so on. If borrow occurs after the
subtraction of two Byte1 of two numbers, that borrow will be propagated into the subtraction of two
Byte2 of the two numbers. Similarly if there is borrow during the subtraction of two Byte2, that
borrow will be propagated into the third bytes of the two numbers. This will go on until highest byte
i.e. Byte8. In this case, one thing is important to consider that there is no chance of occurring any
borrow from the previous stage during the subtraction of lowest bytes i.e. Byte1. Hence before
using SUBB instruction for subtracting Byte1 of the two numbers, the carry flag must be zero. In
this program subtraction will be performed for 8 times. Therefore the register R2 should be taken as
counter.

Here we have followed the signed magnitude convention to improve the readability of the user. In
this convention to represent the sign of the number an extra bit is taken and the magnitude is
represented always in normal form. For example -2 will be 1 00000010 and +2 will be 0 00000010
in signed-magnitude form. To follow this convention the following method is carried out to
represent the result of subtraction in signed-magnitude form. If the result of subtraction is negative
using the instruction SUBB, the magnitude will be in 2’s complement form and the carry flag will
be set. To present the negative result in normal form the magnitude will be again 2’s complemented
and 01H will be stored as 9th byte to show the negative result. On the contrary if the result is
positive, the instruction SUBB will give the magnitude in normal form. Hence there is no
requirement to perform 2’s complement on the magnitude and the magnitude part of the result will
be stored directly in the normal form and 00H will be saved as 9th byte to indicate that the result is
positive.

But the problem here is the shortage of memory pointing registers, because the registers R0 and R1
of Bank0 have been already consumed to point the starting address of the two memory blocks
where minuend and subtrahend are stored. To point the memory block of the result of the
subtraction it is essential to use another memory pointing register, which is served by the register
R0 of Bank2. Therefore in this program it is necessary to switch the banks of 8051 using the two
flags RS0 and RS1 of PSW (Program Status Word). Switching of the banks from Bank0 to Bank2
and vice versa is done with the help of two instructions “SETB PSW.4” and “CLR PSW.4”.

Assembly Language Program 12.4:

SL. Label Instructions of 8051

1 MOV R2,#08H

2 SETB PSW.4

3 MOV R0,#70H

4 CLR PSW.4

5 MOV R0,#50H

__
Department of Electronics & Communication Engineering

8051 160

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

SL. Label Instructions of 8051

6 MOV R1,#60H

7 CLR C

8 REPEAT MOV A,@R0

9 SUBB A,@R1

10 INC R0

11 INC R1

12 SETB PSW.4

13 MOV @R0,A

14 INC R0

15 CLR PSW.4

16 DJNZ R2,REPEAT

17 MOV A,#00H

18 SETB PSW.4

19 MOV @R0,A

20 JNC HERE

21 MOV R2,#08H

22 MOV R0,#70H

23 LOOP MOV A,@R0

24 CPL A

25 ADDC A,#00H

26 MOV @R0,A

27 INC R0

28 DJNZ R2,LOOP

29 MOV A,#01H

30 MOV @R0,A

31 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 161

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.4:
SET1 ►
Input
 Minuend Subtrahend

Addr Content Remarks Addr Content Remarks

50 88 Byte1 60 01 Byte1

51 99 Byte2 61 02 Byte2

52 AA Byte3 62 03 Byte3

53 BB Byte4 63 04 Byte4

54 CC Byte5 64 05 Byte5

55 DD Byte6 65 06 Byte6

56 EE Byte7 66 07 Byte7

57 FF Byte8 67 08 Byte8

SET2 ►
Input
 Minuend Subtrahend

Addr Content Remarks Addr Content Remarks

50 08 Byte1 60 10 Byte1

51 07 Byte2 61 20 Byte2

52 06 Byte3 62 30 Byte3

53 05 Byte4 63 40 Byte4

54 04 Byte5 64 50 Byte5

55 03 Byte6 65 60 Byte6

56 02 Byte7 66 70 Byte7

57 01 Byte8 67 80 Byte8

 Output

Result

Addr Content Remarks

70 87 Byte1

71 97 Byte2

72 A7 Byte3

73 B7 Byte4

74 C7 Byte5

75 D7 Byte6

76 E7 Byte7

77 F7 Byte8

78 00 Positive

 Output

Result

Addr Content Remarks

70 08 Byte1

71 19 Byte2

72 2A Byte3

73 3B Byte4

74 4C Byte5

75 5D Byte6

76 6E Byte7

77 7F Byte8

78 01 Negative

__
Department of Electronics & Communication Engineering

8051 162

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12.5: Write a program to perform algebraic sum of two signed 8-bit binary numbers which are
stored at the memory locations 50H and 51H and also store the result of addition into memory
location 52H.

In this program two 8-bit signed numbers will be added and the result of addition which is basically
8-bit long will be stored into the memory location 52H. As both the numbers are signed, there may
be four possible cases as follows.

Case-1: Both the numbers are positive and result also will be positive.
Case-2: Both the numbers are negative and the result also will be negative.
Case-3: 1st number is positive and 2nd number is negative, which gives positive result if 1st number is
 larger than 2nd number and negative result occurs if 1st number is smaller than 2nd number.
Case-4: 1st number is negative and 2nd number is positive, which gives negative result if 1st number
 is larger than 2nd number and positive result occurs if 1st number is smaller than 2nd number.

In 8051 microcontroller the MSB is used to represent the sign bit and the remaining bits are used as
magnitude of the signed number. If MSB is 0, the number will be considered as positive and if MSB
is 1, the number will be treated as negative. Therefore for 8-bit signed number if D7 = 0, the
number is positive and if D7 = 1, the number is negative. To fulfill this condition, a negative
number is represented in 2’s complement form and a positive one is represented in normal form in
8051. To represent a negative number the number is complemented at first omitting its negative sign
and then 1 is added to it to get the 2’s complement form. For example, -7 is first taken as 07 and
converted to its binary equivalent which is 0000 0111. Now it is complemented to 1111 1000 and
added 1 to it to get 1111 1001 which is the 2’s complement of 07 and it is used as -7 in 8051.
Therefore we can say -7 is represented as F9H in 8051 microcontroller. Therefore in signed
convention the range of 8-bit positive numbers is 0 to (27 – 1) i.e. 0 to 127 and the range of 8-bit
negative numbers is -1 to -27 i.e. -1 to -128. Now all the positive and negative numbers along with
its binary and hexadecimal forms are given in the following table.

Decimal Binary Hexadecimal

127 0111 1111 7F

126 0111 1110 7E

: : :

1 0000 0001 01

0 0000 0000 00

-1 1111 1111 (2’s complement of 1) FF

-2 1111 1110 (2’s complement of 2) FE

: : :

-128 1000 0000 (2’s complement of 128) 80

__
Department of Electronics & Communication Engineering

8051 163

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Hence it is clear that if the result of signed number addition is not in the range as per the above
table, it causes erroneous result and this is called overflow problem. For example, if -128 and -2 are
added it should result -130. But -130 is out of range (-1 to -128) for negative numbers in 8051
microcontroller. That’s why this addition will result overflow error. To encounter this overflow
problem 8051 microcontroller has an overflow flag (OV) in PSW register of 8051. If overflow
occurs, OV flag becomes 1, otherwise it remains 0. The PSW flag of 8051 microcontroller is shown
below.

CY AC F0 RS1 RS0 OV - P

PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

Program Status Word (PSW) of 8051 microcontroller

In the above PSW register each flag is accessed by its bit position like PSW.0, PSW.2 etc. Hence
overflow flag (OV) is accessed by PSW.2. Whether OV is set or not, is checked by the instruction
“JB PSW.2” where JB stands for “jump for bit” i.e. if the bit is set then it will jump, otherwise it
will not jump. Now if the following two conditions are satisfied, then OV flag will be set.

Condition 1 → If there is no carry out of D7 (CY = 0) and a carry from D6 to D7, then OV = 1.

Condition 2 → If there is a carry out of D7 (CY = 0) and no carry from D6 to D7, then OV = 1.

Therefore the status of the overflow flag can be represented as EX-OR operation between CY and
carry from D6 to D7 bit.

In this program the negative numbers are given in 2’s complement form in the memory locations
50H and 51H for algebraic addition. After performing addition the status of the overflow flag is
checked. If it is set, then the program is terminated by storing 0EH at the memory location 52H
where ‘0E’ represents the overflow error. If overflow problem does not arise, the MSB (D7 bit) of
the result is checked. If it is 1, then the result is negative and also in 2’s complement form. To
increase the readability of the user, the 2’s complemented result is converted to its normal form and
the MSB (D7) is made high to indicate that the result is negative. For example, if the result is FE,
then D7 bit of the result is 1. This implies that the result is negative. Now FEH is 2’s complemented
to 02H and ORed with 80H, which results 82H. Therefore in this case the result (-2) is converted to
82H and stored at the memory location 52H. If the MSB of the result is zero, then it is positive and
the result already is in normal form. This normal form of the result is stored at the RAM location
52H.

__
Department of Electronics & Communication Engineering

8051 164

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.5:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 INC R0

4 ADD A,@R0

5 JB PSW.2,ERROR

6 MOV B,A

7 ANL A,#80H

8 CJNE A,#00H,NEG

9 MOV A,B

10 SJMP RESULT

11 NEG MOV A,B

12 CPL A

13 ADD A,#01H

14 ORL A,#80H

15 RESULT INC R0

16 MOV @R0,A

17 SJMP HERE

18 ERROR INC R0

19 MOV A,#0EH

20 MOV @R0,A

21 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 165

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.5:
SET1 ►
Input

Mem. Address Content Remarks

50H 07H Positive No1 (+7)

51H 12H Positive No2 (+18)

SET2 ►
Input

Mem. Address Content Remarks

50H FEH Negative No1 (-2)

51H FBH Negative No2 (-5)

SET3 ►
Input

Mem. Address Content Remarks

50H 80H Negative No1 (-128)

51H FEH Negative No2 (-2)

SET4 ►
Input

Mem. Address Content Remarks

50H 60H Positive No1 (+96)

51H 46H Positive No2 (+70)

SET5 ►
Input

Mem. Address Content Remarks

50H 7FH Positive No1 (+127)

51H FEH Negative No2 (-2)

Output

Mem. Address Content Remarks

52H 19H OV=0,
Result is +25

Output

Mem. Address Content Remarks

52H F9H OV=0,
Result is -7

Output

Mem. Address Content Remarks

52H 7EH OV=1,
Result is +126 (Error)

Output

Mem. Address Content Remarks

52H A6H OV=1,
Result is -90 (Error)

Output

Mem. Address Content Remarks

52H 7DH OV=0,
Result is +125

__
Department of Electronics & Communication Engineering

8051 166

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12.6: Write a program to multiply two 8-bit binary numbers which are stored at the memory
locations 50H and 51H and also store the result of multiplication into memory locations 52H
(lower byte) and 53H (higher byte) respectively.

Unlike 8085 microprocessor, there is an instruction to perform multiplication between two unsigned
8-bit numbers for 8051 microcontroller. The instruction for multiplication is given below.

“MUL AB” where one number is stored in the register A and other number is stored in register B.
After the multiplication the 16-bit result is stored in register B and A respectively. Register B holds
the higher byte and the register A holds the lower byte of the result. Here the number stored at the
memory location 50H will be copied to register A and the number stored at the memory location
51H will be copied to register B. Using the instruction “MUL AB” the multiplication is done and
the content of A and B are stored at the memory locations 52H and 53H respectively.

Assembly Language Program 12.6:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 INC R0

4 MOV B,@R0

5 MUL AB

6 INC R0

7 MOV @R0,A

8 INC R0

9 MOV @R0,B

10 HERE SJMP HERE

Result of Program 12.6:
SET1 ►
Input

Mem. Address Content Remarks

50H 07H No1 (Multiplicand)

51H 12H No2 (Multiplier)

Output

Mem. Address Content Remarks

52H 7EH Lower byte of result

53H 00H Higher byte of result

__
Department of Electronics & Communication Engineering

8051 167

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

12.7: Write a program to divide a 8-bit binary number stored at the memory locations 50H by
another 8-bit number stored at the memory location 51H and store the quotient at the location
52H and the remainder at the location 53H.

In 8051 microcontroller a instruction is present for 8-bit division. The instruction is given below.

“DIV AB”where the content of A is the dividend and the content of B is the divisor. After the
execution of this instruction the content of A becomes the quotient and the content of B becomes the
remainder. If the content of B is zero i.e. the divisor is equal to zero, then divide-by-zero error
occurs and OV flag is set to indicate this error. In this program after the DIV instruction the OV is
checked and if it is 1, FFH is stored at both the memory locations 52H and 53H.

Assembly Language Program 12.7:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 INC R0

4 MOV B,@R0

5 DIV AB

6 JB PSW.2,ERROR

7 INC R0

8 MOV @R0,A

9 INC R0

10 MOV @R0,B

11 SJMP HERE

12 ERROR MOV A,#0FFH

13 INC R0

14 MOV @R0,A

15 INC R0

16 MOV @R0,A

17 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 168

College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.7:
SET1 ►
Input

Mem. Address Content Remarks

50H 5FH No1 (Dividend)

51H 0AH No2 (Divisor)

SET2 ►
Input

Mem. Address Content Remarks

50H 50H No1 (Dividend)

51H 00H No2 (Divisor)

Output

Mem. Address Content Remarks

52H 09H Quotient

53H 05H Remainder

Output

Mem. Address Content Remarks

52H FFH Divide-By-Zero error

53H FFH Divide-By-Zero error

Exercise

1) Write a program to multiply two 8-bit binary numbers which are stored at the memory locations
50H and 51H respectively using successive addition method and also store the result of
multiplication into memory locations 52H (lower byte) and 53H (higher byte) respectively.

2) Write a program to divide a 8-bit binary number stored at the memory locations 50H by another
8-bit number stored at the memory location 51H using successive subtraction method and also
store the quotient at the location 52H and the remainder at the location 53H.

__
Department of Electronics & Communication Engineering

8051 169

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

13. Programs on Data Transfer and Data Separation

13.1: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 60H onward in forward direction.

This program basically performs the copy operation of a set of ten 8-bit data from one memory
location to another memory location consecutively in forward direction. The memory locations
where the ten numbers are stored, is called source block and the memory locations where the ten
numbers have to be transferred is called destination block. In this program the source block starts
from the address 50H to 59H and the destination block starts from the address 60H to 69H inside
the scratchpad area of the onchip RAM. As the data are copied in forward direction the number at
50H will be copied to 60H, the number of 51H will be copied to 61H, the number of 52H will be
copied to 62H and so on. The pictorial representation of the above mentioned procedure has been
already given for 8085 microprocessor.

Assembly Language Program 13.1:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV R1,#60H

3 MOV R2,#0AH

4 REPEAT MOV A,@R0

5 MOV @R1,A

6 INC R0

7 INC R1

8 DJNZ R2,REPEAT

9 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 170

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

Result of Program 13.1:
SET1 ►
Input

Source Block

RAM Address Content Remarks

50 10 No1

51 20 No2

52 30 No3

53 40 No4

54 50 No5

55 60 No6

56 70 No7

57 80 No8

58 90 No9

59 A0 No10

Output
Destination Block

RAM Address Content Remarks

60 10 No1

61 20 No2

62 30 No3

63 40 No4

64 50 No5

65 60 No6

66 70 No7

67 80 No8

68 90 No9

69 A0 No10

13.2: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 54H onward in forward direction.

In this program the source block extends from the RAM location 50H to 59H and the destination
block extends from 54H to 5DH. Therefore six memory locations starting from 54H to 59H of the
source block are common to the destination block i.e. there is a overlapping region between the
source block and the destination block. Now if we start to copy the numbers from the starting
address of the source block to the starting address of the destination block, the numbers of the
source block stored from 54H to 59H will be completely lost before they are transferred to the
destination block. Here our aim is to copy the contents of the entire source block to the destination
block as it is, though the source block will not remain intact. That means the six data from 54H to
59H of the source block will not remain intact, but the entire source block will be copied to the
destination block from 54H to 5DH without any data loss. To accomplish this, the data of the source
block should be copied starting from the last address of the source block to the last address of the
destination block. Therefore data of 59H of source block will be copied to 5DH of destination
block, data of 58H of source block will be copied to 5CH of destination block, data of 57H of
source block will be copied to 5BH of destination block and so on.

__
Department of Electronics & Communication Engineering

8051 171

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

Assembly Language Program 13.2:

SL. Label Instructions of 8051

1 MOV R0,#59H

2 MOV R1,#5DH

3 MOV R2,#0AH

4 REPEAT MOV A,@R0

5 MOV @R1,A

6 DEC R0

7 DEC R1

8 DJNZ R2,REPEAT

9 HERE SJMP HERE

Result of Program 13.2:
SET1 ►
Input

Source Block

RAM Address Content Remarks

50 11 No1

51 22 No2

52 33 No3

53 44 No4

54 55 No5

55 66 No6

56 77 No7

57 88 No8

58 99 No9

59 AA No10

Output
Destination Block

RAM Address Content Remarks

54 11 No1

55 22 No2

56 33 No3

57 44 No4

58 55 No5

59 66 No6

5A 77 No7

5B 88 No8

5C 99 No9

5D AA No10

__
Department of Electronics & Communication Engineering

8051 172

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

13.3: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 60H onward in reverse direction.

In this program ten data of source block starting from RAM location 50H to 59H will be copied to
the destination block starting from RAM location 60H to 69H in reverse direction. Therefore the
data of source block at RAM location 50H will be copied to RAM location 69H of destination
block, the data of source block at RAM location 51H will be copied to RAM location 68H of
destination block, the data of source block at RAM location 52H will be copied to RAM location
67H of destination block and so on. To implement this the memory pointer of source block will be
incremented by one whereas the memory pointer of destination block will be decremented by one
after every data transfer.

Assembly Language Program 13.3:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV R1,#69H

3 MOV R2,#0AH

4 REPEAT MOV A,@R0

5 MOV @R1,A

6 INC R0

7 DEC R1

8 DJNZ R2,REPEAT

9 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 173

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

Result of Program 13.3:
SET1 ►
Input

Source Block

RAM Address Content Remarks

50 12 No1

51 23 No2

52 34 No3

53 45 No4

54 56 No5

55 67 No6

56 78 No7

57 89 No8

58 9A No9

59 AB No10

Output
Destination Block

RAM Address Content Remarks

60 AB No10

61 9A No9

62 89 No8

63 78 No7

64 67 No6

65 56 No5

66 45 No4

67 34 No3

68 23 No2

69 12 No1

13.4: Write a program to separate positive numbers and negative numbers into two different
memory blocks from a set of ten 8-bit signed numbers which are stored consecutively starting
from the memory location 50H onward. The positive block starts from 60H onward and the
negative block starts from 70H onward in the scratchpad area of onchip RAM, where positive
count and negative count will be stored at the starting address of each block.

We know, if the MSB of a binary number is high, the number will be treated as negative number
and if the MSB is low, the number is considered as positive number. So, the MSB of each of the ten
8-bit binary numbers which are stored at the source block starting from 50H to 59H, is checked for
high or low and is separated into two blocks of memory depending upon the status of MSB. The
memory block which is storing the positive numbers, is called the positive block and the memory
block which is holding the negative numbers, is called the negative block. So here the positive
block starts from 60H onward, where the first memory location 60H holds the number of count of
positive numbers i.e. how many positive numbers and all the positive numbers begins to be stored
from 61H onward. Similarly the negative block starts from 70H onward, where the first location
70H stores the number of count of negative numbers and all the negative numbers will be stored
starting from the memory location 71H onward.

In case of 8051 microcontroller there is no sign flag present in the PSW. So we have no option to
check whether a number is positive or negative directly in 8051. To accomplish this the number will
be copied to accumulator and the content of accumulator rotated left through carry (using RLC

__
Department of Electronics & Communication Engineering

8051 174

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

instruction) for one time to get the MSB in the carry flag. Now the status of the carry flag is
checked (using JNC/ JC instruction) to decide the polarity of the number. That means if the carry
flag CY = 1, the number will be negative and if CY = 0, the number will be positive. We need three
memory pointers in this case, 1st memory pointer for source block, 2nd memory pointer for positive
block and 3rd memory pointer for negative block. In case of 8051 only two memory pointers R0 and
R1 are available for register indirect addressing from Bank0. Therefore they will be used as 2nd and
3rd memory pointers for positive and negative block respectively. Now the register R0 from Bank2
will be utilized as 1st memory pointer for source block. Hence it is clear that the bank switching
between Bank0 and Bank2 will be required here to implement this program.

Assembly Language Program 13.4:

SL. Label Instructions of 8051

1 SETB PSW.4

2 MOV R0,#50H

3 CLR PSW.4

4 MOV R2,#0AH

5 MOV R0,#61H

6 MOV R1,#71H

7 MOV R3,#00H

8 MOV R4,#00H

9 REPEAT CLR C

10 SETB PSW.4

11 MOV A,@R0

12 INC R0

13 RLC A

14 CLR PSW.4

15 JNC POSITIVE

16 INC R4

17 RRC A

18 MOV @R1,A

19 INC R1

20 SJMP SKIP

21 POSITIVE INC R3

__
Department of Electronics & Communication Engineering

8051 175

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

SL. Label Instructions of 8051

22 RRC A

23 MOV @R0,A

24 INC R0

25 SKIP DJNZ R2,REPEAT

26 MOV 60H,R3

27 MOV 70H,R4

28 HERE SJMP HERE

Result of Program 13.4:
SET1 ►
Input

Source Block

Address Content Remarks

50 05 No1

51 0D No2

52 DD No3

53 AA No4

54 12 No5

55 32 No6

56 71 No7

57 0A No8

58 8F No9

59 0A No10

Output
 Positive Block Negative Block

Address Content Remarks Address Content Remarks

60 07 Positive
Count

70 03 Negative
Count

61 05 +No1 71 DD -No3

62 0D +No2 72 AA -No4

63 12 +No5 73 8F -No9

64 32 +No6

65 71 +No7

66 0A +No8

67 0A +No10

__
Department of Electronics & Communication Engineering

8051 176

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

13.5: Write a program to separate odd numbers and even numbers into two different memory
blocks from a set of ten 8-bit numbers which are stored consecutively starting from the memory
location 50H onward. The odd block starts from 60H onward and the even block starts from 70H
onward in the scratchpad area of onchip RAM, where odd count and even count will be stored at
the starting address of each block.

We know, if the LSB of a binary number is high, the number will be treated as odd number and if
the LSB is low, the number is considered as even number. So, the LSB of each of the ten 8-bit
binary numbers which are stored at the source block starting from 50H to 59H, is checked for high
or low and is separated into two blocks of memory depending upon the status of LSB. The memory
block which is storing the odd numbers, is called the odd block and the memory block which is
holding the even numbers, is called the even block. So here the odd block starts from 60H onward,
where the first memory location 60H holds the number of count of odd numbers and all the odd
numbers begin to be stored from 61H onward. Similarly the even block starts from 70H onward,
where the first location 70H stores the number of count of even numbers and all the even numbers
will be stored starting from the memory location 71H onward.

In case of 8051 microcontroller the number will be copied to accumulator and the content of
accumulator rotated right through carry (using RRC instruction) for one time to get the LSB in the
carry flag. Now the status of the carry flag is checked (using JNC/ JC instruction) to decide whether
the number is odd or even. That means if the carry flag CY = 1, the number will be odd and if CY =
0, the number will be even. We need three memory pointers in this case, 1st memory pointer for
source block, 2nd memory pointer for odd block and 3rd memory pointer for even block. In case of
8051 only two memory pointers R0 and R1 are available for register indirect addressing from
Bank0. Therefore they will be used as 2nd and 3rd memory pointers for odd and even block
respectively. Now the register R0 from Bank2 will be utilized as 1st memory pointer for source
block. Hence it is clear that the bank switching between Bank0 and Bank2 will be required here to
implement this program.

Assembly Language Program 13.5:

SL. Label Instructions of 8051

1 SETB PSW.4

2 MOV R0,#50H

3 CLR PSW.4

4 MOV R2,#0AH

5 MOV R0,#61H

6 MOV R1,#71H

7 MOV R3,#00H

__
Department of Electronics & Communication Engineering

8051 177

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

SL. Label Instructions of 8051

8 MOV R4,#00H

9 REPEAT CLR C

10 SETB PSW.4

11 MOV A,@R0

12 INC R0

13 RRC A

14 CLR PSW.4

15 JC ODD

16 INC R4

17 RLC A

18 MOV @R1,A

19 INC R1

20 SJMP SKIP

21 ODD INC R3

22 RLC A

23 MOV @R0,A

24 INC R0

25 SKIP DJNZ R2,REPEAT

26 MOV 60H,R3

27 MOV 70H,R4

28 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 178

College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

Result of Program 13.5:
SET1 ►
Input

Source Block

Address Content Remarks

50 05 No1

51 0D No2

52 DD No3

53 AA No4

54 12 No5

55 32 No6

56 71 No7

57 0A No8

58 8E No9

59 0A No10

Output
 Odd Block Even Block

Address Content Remarks Address Content Remarks

60 04 Odd
Count

70 06 Even
Count

61 05 No1 71 AA No4

62 0D No2 72 12 No5

63 DD No3 73 32 No6

64 71 No7 74 0A No8

75 8E No9

76 0A No10

Exercise

3) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 40H onward
in the onchip RAM of 8051. Write a program to insert an element stored at memory location
4FH into the memory location 43H.

4) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 50H onward
in the onchip RAM of 8051. Write a program to delete the element which is stored at memory
location 55H.

5) Write a program to store AAH and BBH alternately for 100 times starting from memory location
30H onward in the scratchpad area of 8051. Also store the last address where BBH is stored into
the register R7 of Bank3 of 8051.

6) Write a program to store first ten natural numbers consecutively from memory location 50H in
the onchip RAM of 8051.

7) Write a program to store first ten numbers of Fibonacci series consecutively from memory
location 60H in the onchip RAM of 8051.

[Hint: 1st no. = 0 and 2nd no. = 1 for Fibonacci series
 After that nth no. = (n-1)th no. + (n-2)th no.]

__
Department of Electronics & Communication Engineering

8051 179

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

14. Programs on Searching and Sorting

14.1: Write a program to find the largest and the smallest number from a list of ten 8-bit
numbers which are stored from the memory location 50H onward and store the largest and the
smallest numbers at memory location 5AH and 5BH respectively.

In this program the largest number will be stored in register R3 whereas the smallest number will be
stored in register R4 primarily, them the largest value stored inside R3 will be transferred to
memory location 5AH and the smallest value inside R4 will be transferred to memory location
5BH. To accomplish this, the 1st number at memory location 50H will be copied into R3 and R4
both. Then the next numbers stored consecutively from 51H will be compared with R3 as well as
R4 one by one. If the number is larger than the content of R3, the number will be copied to R3 to
overwrite the previous value. On the contrary, if the number is smaller than the content of R4, it
will be replaced by the number. Thus we get the largest value inside R3 and the smallest value
inside R4 finally after scanning all the ten numbers which are stored starting from the memory
location 50H to 59H.

Assembly Language Program 14.1:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV R3,A

4 MOV R4,A

5 MOV R2,#09H

6 REPEAT INC R0

7 MOV B,@R0

8 MOV A,R3

9 CJNE A,B,NEXT1

10 NEXT1 JNC SKIP1

11 MOV R3,B

12 SKIP1 MOV A,R4

13 CJNE A,B,NEXT2

14 NEXT2 JC SKIP2

15 MOV R4,B

__
Department of Electronics & Communication Engineering

8051 180

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

SL. Label Instructions of 8051

16 SKIP2 DJNZ R2,REPEAT

17 INC R0

18 MOV A,R3

19 MOV @R0,A

20 INC R0

21 MOV A,R4

22 MOV @R0,A

23 HERE SJMP HERE

Result of Program 14.1:
SET1 ►
Input

Mem. Address Content Remarks

50 05 No1

51 0D No2

52 DD No3

53 AA No4

54 12 No5

55 32 No6

56 71 No7

57 0A No8

58 8F No9

59 0A No10

Output

5A → DD (Largest No.)
5B → 05 (Smallest No.)

__
Department of Electronics & Communication Engineering

8051 181

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

14.2: Write a program to find the number DDH from a list of ten 8-bit numbers which are stored
from the memory location 50H onward and store the number of times DDH found into the
memory location 5AH.

In this program each and every number from the list of ten numbers stored consecutively from
memory location 50H to 59H is compared with the key number DDH. If there is a matching, the
counter register R3 will be incremented by one, otherwise the content of R3 remains unchanged.
Finally the register will hold the number times DDH found in the list of ten numbers and will be
stored at RAM location 5AH.

Assembly Language Program 14.2:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV R2,#0AH

3 MOV R3,#00H

4 REPEAT MOV A,@R0

5 CJNE A,#0DDH,SKIP

6 INC R3

7 SKIP INC R0

8 DJNZ R2,REPEAT

9 MOV A,R3

10 MOV @R0,A

11 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 182

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Result of Program 14.2:
SET1 ►
Input

Mem. Address Content Remarks

50 05 No1

51 0D No2

52 DD No3

53 AA No4

54 12 No5

55 32 No6

56 DD No7

57 0A No8

58 8F No9

59 0A No10

SET2 ►
Input

Mem. Address Content Remarks

50 05 No1

51 0D No2

52 D0 No3

53 AA No4

54 12 No5

55 32 No6

56 D0 No7

57 0A No8

58 8F No9

59 0A No10

Output

5A → 02 (No. of times DDH found)

Output

5A → 00 (No. of times DDH found)

__
Department of Electronics & Communication Engineering

8051 183

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

14.3: Write a program to arrange a set of ten 8-bit numbers stored from the memory location
50H onward in ascending order.

It is a program the Bubble sort technique is used to arrange the numbers. In Bubble sort, there will
be (N – 1) no. of passes for N no. of 8-bit numbers and number of comparisons between two
consecutive numbers decreases by one for every pass. Comparisons between two successive
numbers are always started from the first number corresponding to all passes. If there are five
numbers, for 1st pass there will be four comparisons, for 2nd pass there will be three comparisons, for
3rd pass two comparisons and for 4th pass single comparison will be done. In each comparison, if
first number is greater than the second one, they are interchanged i.e. the first number goes in the
position of second number and the second number comes in the position of the first number. In this
way the largest number will occupy the last position after the completion of 1st pass. Similarly the
second largest number will be placed at the last but one position after the completion of 2nd pass. If
this process continues, we get completely sorted numbers in ascending order after the completion of
all the passes. Now it is necessary to take an example to sort five numbers in ascending order for
better clarification which is explained previously in the program of sorting for 8085 microprocessor.

Assembly Language Program 14.3:

SL. Label Instructions of 8051

1 MOV R2,#09H

2 LOOP1 MOV R0,#50H

3 MOV A,R2

4 MOV R3,A

5 LOOP2 MOV A,@R0

6 INC R0

7 MOV B,@R0

8 CJNE A,B,NEXT

9 NEXT JC SKIP

10 DEC R0

11 MOV @R0,B

12 INC R0

13 MOV @R0,A

14 SKIP DJNZ R3,LOOP2

15 DJNZ R2,LOOP1

16 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 184

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Result of Program 14.3:
SET1 ►
Input

Before Sorting

Mem. Address Content Remarks

50 05

51 0D

52 DD

53 AA

54 12

55 32

56 71

57 0A

58 8F

59 0A

Output
After Sorting

Mem. Address Content Remarks

50 05

51 0A

52 0A

53 0D

54 12

55 32

56 71

57 8F

58 AA

59 DD

14.4: Suppose two sorted lists of ten and five numbers are stored starting from memory location
40H onward and 50H onward respectively. Write a program to merge these two sorted lists into a
separate list in such a way that the generated list also will be in sorted form and will be stored
from 60H onward. Assume all the lists are sorted in ascending order in this program.

In this case 1st sorted list is stored from 40H and 2nd sorted list is stored from 50H. If the 1st and 2nd

list consist of m and n no. of elements, the 3rd list after merging will consist (m + n) no. of elements.
Here one element from the 1st list and another element from the 2nd list will be compared to each
other. Between these two elements which one is smaller will be copied into the 3rd list. Thus this
procedure will continue until any one list becomes exhausted i.e. all the elements of that list are
transferred to the 3rd list. After this, the remaining elements of the other list will be copied to 3 rd list
consecutively until it becomes exhausted. Finally the 3rd list of (m + n) elements thus formed
starting from memory location 60H, becomes automatically sorted in ascending order. The above
mentioned procedure is explained pictorially as shown below with two lists of 5 and 2 elements
respectively where 7 iterations (5 + 2) are needed to create the 3rd sorted list.

__
Department of Electronics & Communication Engineering

8051 185

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Iteration 1:

 1st Sorted List 2nd Sorted List 3rd Sorted List

Address Content Address Content Address Content

40 05 (Smaller) ↔ 50 0A 60 05

41 0D 51 32

42 DD

43 DF

44 EE

Iteration 2:

 1st Sorted List 3rd Sorted List

Address Content 2nd Sorted List Address Content

40 05 Address Content 60 05

41 0D ↔ 50 0A (Smaller) 61 0A

42 DD 51 32

43 DF

44 EE

Iteration 3:
 3rd Sorted List

1st Sorted List 2nd Sorted List Address Content

Address Content Address Content 60 05

40 05 50 0A 61 0A

41 0D (Smaller) ↔ 51 32 62 0D

42 DD

43 DF

44 EE

__
Department of Electronics & Communication Engineering

8051 186

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Iteration 4:
 3rd Sorted List

1st Sorted List Address Content

Address Content 2nd Sorted List 60 05

40 05 Address Content 61 0A

41 0D 50 0A 62 0D

42 DD ↔ 51 32 (Smaller) 63 32

43 DF 2nd Sorted List is exhausted

44 EE

Iteration 5:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 60 05

Address Content Address Content 61 0A

40 05 50 0A 62 0D

41 0D 51 32 63 32

42 DD 64 DD

43 DF

44 EE

Iteration 6:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 60 05

Address Content Address Content 61 0A

40 05 50 0A 62 0D

41 0D 51 32 63 32

42 DD 64 DD

43 DF 65 DF

44 EE

__
Department of Electronics & Communication Engineering

8051 187

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Iteration 7:
 3rd Sorted List

Address Content

1st Sorted List 2nd Sorted List 60 05

Address Content Address Content 61 0A

40 05 50 0A 62 0D

41 0D 51 32 63 32

42 DD 64 DD

43 DF 65 DF

44 EE 66 EE

Note: Gray colored cells are indicating that they have already been transferred to destination
memory locations.

In this program registers R2 and R3 acts as memory pointer of 1 st sorted list and 2nd sorted list
respectively and R1 register is the memory pointer of 3rd merged list. Three registers (R4, R5 and
R6) will be used as counters of 1st, 2nd and 3rd list respectively. After every comparison the smaller
element will be added to the 3rd list and the memory pointer R1 of 3rd list along with any one
memory pointer (either R2 or R3) will be incremented by 1 to get access of the next memory
location. This process will be repeated until any one counter of 1st or 2nd list becomes zero. As soon
as the particular counter of one list becomes zero, the remaining elements of the other list will be
added to the 3rd list one by one. Thus a merged 3rd list whose all the elements are arranged in
ascending order is formed ultimately.

Assembly Language Program 14.4:

SL. Label Instructions of 8051

1 MOV R1,#60H

2 MOV R2,#40H

3 MOV R3,#50H

4 MOV R4,#0AH

5 MOV R5,#05H

6 MOV R6,#0FH

7 REPEAT MOV A,R4

8 CJNE A,#00H,L1

9 L4 MOV A,R3

__
Department of Electronics & Communication Engineering

8051 188

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

SL. Label Instructions of 8051

10 MOV R0,A

11 MOV A,@R0

12 MOV @R1,A

13 INC R3

14 INC R1

15 DEC R5

16 SJMP L3

17 L1 MOV A,R5

18 CJNE A,#00H,L2

19 L5 MOV A,R2

20 MOV R0,A

21 MOV A,@R0

22 MOV @R1,A

23 INC R2

24 INC R1

25 DEC R4

26 SJMP L3

27 L2 MOV A,R2

28 MOV R0,A

29 MOV A,@R0

30 MOV B,R3

31 MOV R0,B

32 MOV B,@R0

33 CJNE A,B,NEXT

34 NEXT JNC L4

35 SJMP L5

36 L3 DJNZ R6,REPEAT

37 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 189

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Result of Program 14.4:
SET1 ►
Input

 1st Sorted List 2nd Sorted List

Address Content Address Content

40 05 50 0A

41 0D 51 1F

42 A5 52 32

43 AA 53 A9

44 AF 54 B9

45 B1

46 CC

47 D6

48 DA

49 DD

Output

3rd Sorted List

Address Content

60 05

61 0A

62 0D

63 1F

64 32

65 A5

66 A9

67 AA

68 AF

69 B1

6A B9

6B CC

6C D6

6D DA

6E DD

Exercise

1) Write a program to find the largest number from a list of sixteen 8-bit numbers which are stored from the
memory location 50H onward and store the largest number in register R3.

2) Write a program to find the smallest number from a list of ten 8-bit numbers which are stored from the
memory location 50H onward and store the smallest number in register R4.

3) Write a program to arrange a set of ten 8-bit numbers stored from the memory location 50H onward in
descending order using bubble sort.

4) Write a program to determine the no. of times FF present in a set of 20 8-bit numbers which are stored
from memory location 60H. Store the count value at the memory location 5FH.

5) Suppose two sorted lists of eight and five numbers are stored in ascending order starting from memory
location 40H onward and 50H onward respectively. Write a program to merge these two sorted lists into a
separate list in such a way that the generated list will be in descending order and will be stored from
9050H onward.

__
Department of Electronics & Communication Engineering

8051 190

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15. Programs on Data Conversion

15.1: Write a program to convert a 2-digit packed BCD number stored at memory location 50H to
unpacked BCD numbers which will be stored at memory locations 51H and 52H.

We know that a 2-digit packed BCD number is 8 bits long where lower 4 bits (lower nibble) forms
LSD (Least significant digit) and upper 4 bits (upper nibble) forms MSD (Most significant digit).
Now these two digits should be separated to form two unpacked BCD numbers. For example – 52 is
a packed BCD and the corresponding unpacked BCD numbers are 05 (MSD) and 02 (LSD).

Now to extract out the LSD the packed BCD should be AND operated with 0FH. On the contrary
the MSD will be separated after performing AND operation with F0H and the result of AND
operation has to be shifted right 4 times. How a packed BCD 52H will be converted to unpacked
BCDs are shown below.

B7 B6 B5 B4 B3 B2 B1 B0

2-digit packed BCD (52H) → 0 1 0 1 0 0 1 0
0FH → 0 0 0 0 1 1 1 1

Bitwise AND operation → --
Unpacked BCD with LSD (02H) → 0 0 0 0 0 0 1 0

B7 B6 B5 B4 B3 B2 B1 B0

2-digit packed BCD (52H) → 0 1 0 1 0 0 1 0
F0H → 1 1 1 1 0 0 0 0

Bitwise AND operation → --
Result of AND operation (50H) → 0 1 0 1 0 0 0 0

After 1st right shift → 0 0 1 0 1 0 0 0
After 2nd right shift → 0 0 0 1 0 1 0 0
After 3rd right shift → 0 0 0 0 1 0 1 0

Unpacked BCD with MSD (05H) →
(After 4th right shift)

0 0 0 0 0 1 0 1

__
Department of Electronics & Communication Engineering

8051 191

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.1:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV R2,A

4 ANL A,#0FH

5 INC R0

6 MOV @R0,A

7 MOV A,R2

8 ANL A,#0F0H

9 RR A

10 RR A

11 RR A

12 RR A

13 INC R0

14 MOV @R0,A

15 HERE SJMP HERE

Result of Program 15.1:
SET1 ►
Input

Address Content Remarks

50 68 2 digit packed BCD

SET2 ►
Input

Address Content Remarks

50 94 2 digit packed BCD

Output

Address Content Remarks

51 08 Unpacked BCD with LSD

52 06 Unpacked BCD with MSD

Output

Address Content Remarks

51 04 Unpacked BCD with LSD

52 09 Unpacked BCD with MSD

__
Department of Electronics & Communication Engineering

8051 192

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.2: Write a program to convert two unpacked BCD numbers stored at memory locations 50H
and 51H to a two digits packed BCD number which will be stored at memory locations 52H.
Assume that the memory locations 50H and 51H is holding the unpacked BCD numbers
containing MSD and the unpacked BCD number containing LSD respectively.

In this program two unpacked BCD numbers – one containing LSD and other containing MSD are
joined together to a two digits packed BCD numbers. To do this the unpacked BCD consisting of
MSD are shifted left for four times and then it will be OR-operated with the unpacked BCD
consisting of LSD to construct the packed BCD number. Two unpacked BCD numbers 04 (LSD)
and 08 (MSD) are converted to 2-digit packed BCD using the following technique as shown below.

B7 B6 B5 B4 B3 B2 B1 B0

Unpacked BCD containing MSD (08H) → 0 0 0 0 1 0 0 0
After 1st left shift → 0 0 0 1 0 0 0 0
After 2nd left shift → 0 0 1 0 0 0 0 0
After 3rd left shift → 0 1 0 0 0 0 0 0
After 4th left shift → 1 0 0 0 0 0 0 0

Unpacked BCD containing LSD (04H) → 0 0 0 0 0 1 0 0
Bitwise OR operation → --

2-digit Packed BCD (84H) → 1 0 0 0 0 1 0 0

Assembly Language Program 15.2:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 RL A

4 RL A

5 RL A

6 RL A

7 INC R0

8 MOV B,@R0

9 ORL A,B

10 INC R0

11 MOV @R0,A

12 HERE: SJMP HERE

__
Department of Electronics & Communication Engineering

8051 193

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.2:
SET1 ►
Input

Address Content Remarks

50 07 Unpacked BCD containing MSD

51 02 Unpacked BCD containing LSD

SET2 ►
Input

Address Content Remarks

50 06 Unpacked BCD containing MSD

51 05 Unpacked BCD containing LSD

 Output

Address Content Remarks

52 72 Packed BCD

 Output

Address Content Remarks

52 65 Packed BCD

15.3: Write a program to convert a 2-digit packed BCD number stored at memory location 50H to
its equivalent Hexadecimal number which will be stored into memory location 51H.

Method 1: The two packed digit BCD number is converted to two unpacked BCD numbers first.
For example if the packed BCD number is 25, the unpacked BCD numbers will be 02 and 05
respectively, where 02 is MSD (Most significant digit) and 05 is LSD (Least significant digit). Here
basically the two digits are separated and LSD is added with 10 times of MSD to get the equivalent
Hexadecimal number. Therefore Hexadecimal number = 10 × MSD + LSD.

In this program 10 × MSD is stored in register A and LSD is stored in register R3. Finally register A
and register R3 are added together to get the Hexadecimal number. We know 10 × MSD = 8 × MSD
+ 2 × MSD. If a number is shifted left 3 times, it will be multiplied with 8 and if a number is shifted
left 1 time, it will be multiplied with 2. Here initially MSD is in the upper nibble and the lower
nibble is zero. If it is shifted right 1 time, it is equivalent to shifting left 3 times for getting 8 × MSD
and if it is shifted right 3 times we shall get 2 × MSD. Here the number masked with F0H is shifted
right one time to get 8 × MSD and shifted right 3 times to get 2 × MSD. Finally there two are added
together to get 10 × MSD. This is explained in the following example.

The packed BCD number = 25
 Masked with 0F = 05 and masked with F0 = 20 = 0010 0000
After shifted right 1 time = 0001 0000 = 16 = 8 × 2
After shifted right 3 times = 0000 0100 = 4 = 2 × 2
Now 10 × 2 = 8 × 2 + 2 × 2
Therefore equivalent HEX number = 10 × 2 + 05

__
Department of Electronics & Communication Engineering

8051 194

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.3 (Method 1):

SL. Label Instructions of 8051

1 MOV A,50H

2 MOV R2,A

3 ANL A,#0FH

4 MOV R3,A

5 MOV A,R2

6 ANL A,#0F0H

7 RR A

8 MOV R2,A

9 RR A

10 RR A

11 ADD A,R2

12 ADD A,R3

13 MOV 51H,A

14 HERE SJMP HERE

Method 2: In this method the two digit packed BCD number is unpacked into LSD (least significant
digit) and MSD (most significant digit) first, then the MSD is multiplied by 10 with the help of
“MUL AB” instruction of 8051 microcontroller. Thus the achieved 10 times of MSD is added with
the unpacked LSD to get the equivalent hexadecimal number.

Assembly Language Program 15.3 (Method 2):

SL. Label Instructions of 8051

1 MOV A,50H

2 MOV R2,A

3 ANL A,#0FH

4 MOV R3,A

5 MOV A,R2

6 ANL A,#0F0H

7 RR A

__
Department of Electronics & Communication Engineering

8051 195

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

SL. Label Instructions of 8051

8 RR A

9 RR A

10 RR A

11 MOV B,#10

12 MUL AB

13 ADD A,R3

14 MOV 51H,A

15 HERE SJMP HERE

Result of Program 15.3:
SET1 ►
Input

RAM Address Content Remarks

50 99 2 digit packed BCD

SET2 ►
Input

RAM Address Content Remarks

8050 15 2 digit packed BCD

Output

Mem. Address Content Remarks

51 63 Equivalent Hex No.

Output

RAM Address Content Remarks

51 0F Equivalent Hex No.

15.4: Write a program to convert an 8-bit Hexadecimal number stored at memory location 50H to
unpacked BCD numbers which will be stored starting from memory location 51H.

Method 1: In this case the Hexadecimal number is converted to three unpacked BCDs i.e. three
digits are separated and saved into three different memory locations. For example – if the
Hexadecimal number is FEH (254 in Decimal), then three unpacked BCD digits 02, 05 and 04 will
be stored into three consecutive memory locations starting from 51H. That means MSD (most
significant digit) will be stored at 51H, ID (Intermediate digit) will be stored at 52H and LSD (least
significant digit) will be stored at 53H. For this purpose the Hexadecimal number is divided by 100
(64 in HEX) first, where quotient gives the 1st unpacked BCD (MSD). The remainder is again
divided by 10 (0A in HEX) to get 2nd unpacked BCD (ID) in the quotient and 3rd unpacked BCD
(LSD) in the remainder. These three unpacked BCDs are stored consecutively in the memory
locations starting from 51H to 53H.

__
Department of Electronics & Communication Engineering

8051 196

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.4 (Method 1):

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV B,#100

4 DIV AB

5 INC R0

6 MOV @R0,A

7 MOV A,B

8 MOV B,#10

9 DIV AB

10 INC R0

11 MOV @R0,A

12 INC R0

13 MOV @R0,B

14 HERE SJMP HERE

Method 2: In this case the Hexadecimal number is converted to three unpacked BCDs i.e. three
digits are separated and saved into three different memory locations. For example – if the
Hexadecimal number is FEH (254 in Decimal), then three unpacked BCD digits 04, 05 and 02 will
be stored into three consecutive memory locations starting from 51H. That means LSD (least
significant digit) will be stored at 51H, ID (Intermediate digit) will be stored at 52H and MSD
(most significant digit) will be stored at 53H. To do this the hexadecimal number is divided by 10,
which will give 3rd unpacked BCD (LSD) as remainder, after that the quotient is again divided by
10 to give 2nd unpacked BCD (ID) as remainder and 1st unpacked BCD (MSD) as quotient.

Assembly Language Program 15.4 (Method 2):

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV B,#10

4 DIV AB

__
Department of Electronics & Communication Engineering

8051 197

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

SL. Label Instructions of 8051

5 INC R0

6 MOV @R0,B

7 MOV B,#10

8 DIV AB

9 INC R0

10 MOV @R0,B

11 INC R0

12 MOV @R0,A

13 HERE SJMP HERE

Result of Program 15.4:
SET1 ►
Input

RAM Address Content Remarks

50 FD 2 digit Hex No.

Hex No. = FD Equivalent Decimal No. = 253

SET2 ►
Input

RAM Address Content Remarks

50 E1 2 digit Hex No.

Hex No. = E1 Equivalent Decimal No. = 225

Output

RAM Address Content Remarks

51 02 Unpacked BCD1

52 05 Unpacked BCD2

53 03 Unpacked BCD3

Output

RAM Address Content Remarks

51 02 Unpacked BCD1

52 02 Unpacked BCD2

53 05 Unpacked BCD3

__
Department of Electronics & Communication Engineering

8051 198

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.5: Write a program to convert a Hexadecimal number to its equivalent ASCII numbers. Store
the Hexadecimal number at 60H and corresponding ASCII numbers at 61H and 62H
respectively.

A single digit Hexadecimal number is represented by any digit from 0 to 9 and any alphabet from A
to F. Here the two digit Hexadecimal number is separated into two single digit Hexadecimal number
by masking the upper nibble, right shifting and masking the lower nibble. Now each single digit
Hexadecimal number will be converted to its equivalent ASCII numbers. The ASCII values of 0 to
9 and A to F are given below.

Hexadecimal Number ASCII Value

0 30H

1 31H

2 32H

3 33H

4 34H

5 35H

6 36H

7 37H

8 38H

9 39H

A 41H

B 42H

C 43H

D 44H

E 45H

F 46H

From the ASCII chart it is clear that if Hexadecimal number lies between 0 to 9, 30H will be added
with the Hexadecimal number and if Hexadecimal number lies between A to F, then 37H should be
added with it to get the corresponding ASCII value.

For example – the hexadecimal number 4EH is separated into 04 (MSD) and 0E (LSD) whereas 04
is achieved by masking with F0H and right shifting it four times and 0EH is achieved by masking
with 0FH. Now 30H is added with 04H to get the corresponding ASCII value 34H. On the other
hand 37H is added with 0EH to get the ASCII value 45H.

__
Department of Electronics & Communication Engineering

8051 199

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.5:

SL. Label Instructions of 8051

1 MOV R0,#60H

2 MOV A,@R0

3 MOV B,A

4 ANL A,#0FH

5 ACALL HEX2ASCII

6 INC R0

7 MOV @R0,A

8 MOV A,B

9 ANL A,#0F0H

10 RR A

11 RR A

12 RR A

13 RR A

14 ACALL HEX2ASCII

15 INC R0

16 MOV @R0,A

17 HERE SJMP HERE

18 HEX2ASCII CJNE A,#0AH,NEXT

19 NEXT JC DIGIT

20 ADD A,#07H

21 DIGIT ADD A,#30H

22 RET

__
Department of Electronics & Communication Engineering

8051 200

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.5:
SET1 ►
Input

Address Content Remarks

60 5F 2 digit Hex No.

SET2 ►
Input

Address Content Remarks

60 A0 2 digit Hex No.

Output

Address Content Remarks

61 35 ASCII Value of 5

62 46 ASCII Value of F

Output

Address Content Remarks

61 41 ASCII Value of A

62 30 ASCII Value of 0

__
Department of Electronics & Communication Engineering

8051 201

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.6: Write a program to construct a Hexadecimal number from two ASCII numbers which are
stored at RAM locations 60H and 61H respectively. Store the Hexadecimal number at RAM
location 62H.

A single digit Hexadecimal number is represented by any digit from 0 to 9 or any alphabet from A
to F. We know that the ASCII values of 0 to 9 lies between 30H to 39H and the ASCII values of A
to F lies between 41H to 46H according the ASCII table given below. As a hexadecimal number
will be constructed using the two ASCII values, the ASCII values should be provided between 30H
to 39H or 41H to 46H. In this program the ASCII value stored at 60H will be used to form the MSD
of the hexadecimal number and the ASCII value stored at 61H will be utilized to construct LSD of
the hexadecimal number. Now the generated MSD will be shifted left for four times and OR-
operated with the LSD to construct the packed 2-digit hexadecimal number.

Hexadecimal Number ASCII Value

0 30H

1 31H

2 32H

3 33H

4 34H

5 35H

6 36H

7 37H

8 38H

9 39H

A 41H

B 42H

C 43H

D 44H

E 45H

F 46H

From the ASCII chart it is clear that if ASCII value lies between 30H to 39H, 30H will be
subtracted from the ASCII value and if ASCII value lies between 41H to 46H, then 37H will be
subtracted from it to get the corresponding single digit hexadecimal number. In this way two single
digit hexadecimal numbers, one MSD and other LSD, are formed and finally the LSD is OR-
operated with 4 times left shifted version of MSD to generate the hexadecimal number.

__
Department of Electronics & Communication Engineering

8051 202

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.6:

SL. Label Instructions of 8051

1 MOV R0,#60H

2 MOV A,@R0

3 ACALL ASCII2HEX

4 RL A

5 RL A

6 RL A

7 RL A

8 MOV B,A

9 INC R0

10 MOV A,@R0

11 ACALL ASCII2HEX

12 ORL A,B

13 INC R0

14 MOV @R0,A

15 HERE SJMP HERE

16 ASCII2HEX CLR C

17 SUBB A,#30H

18 CJNE A,#0AH,NEXT

19 NEXT JC NOACTION

20 SUBB A,#07H

21 NOACTION RET

__
Department of Electronics & Communication Engineering

8051 203

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.6:
SET1 ►
Input

Address Content Remarks

60 35 ASCII value for MSD

61 46 ASCII value for LSD

SET2 ►
Input

Address Content Remarks

60 41 ASCII value for MSD

61 31 ASCII value for LSD

Output

Address Content Remarks

62 5F Hexadecimal number

Output

Address Content Remarks

62 A1 Hexadecimal number

15.7: Write a program to convert an 8-bit Hexadecimal number stored at RAM location 50H to
its equivalent gray code which will be stored at RAM location 51H.

To determine the corresponding gray code of a binary number the rule is to take the MSB of the
binary number unchanged and all the other bits of the gray code is achieved by performing EXOR
operation between two consecutive bits of the binary number. If an 8-bit binary number is
represented as B7B6B5B4B3B2B1B0, then the corresponding gray code can be determined as follows.

G7 = 0 ⊕ B7 = B7 G3 = B4 B⊕ 3

G6 = B7 ⊕ B6 G2 = B3 B⊕ 2

G5 = B6 B⊕ 5 G1 = B2 B⊕ 1

G4 = B5 B⊕ 4 G0 = B1 B⊕ 0

The above mentioned process can be implemented by right shifting the binary number one bit
position, which appends a zero at the MSB position and then performing bit-wise XOR operation
between the actual binary number and the right shifted version of the binary number as shown
below.

Binary Number → B7 B6 B5 B4 B3 B2 B1 B0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary Number → 0 B7 B6 B5 B4 B3 B2 B1

--
Gray Code → G7 G6 G5 G4 G3 G2 G1 G0

__
Department of Electronics & Communication Engineering

8051 204

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.7:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV B,A

CLR C

4 RRC A

5 XRL A,B

6 INC R0

7 MOV @R0,A

8 HERE SJMP HERE

Result of Program 15.7:
SET1 ►
Input

Mem. Address Content Remarks

50 25 8-bit Hex Number

SET2 ►
Input

Mem. Address Content Remarks

50 C2 8-bit Hex Number

Output

Address Content Remarks

51 37 8-bit Gray Code

Output

Address Content Remarks

51 A3 8-bit Gray Code

15.8: Write a program to convert an 8-bit gray code stored at RAM location 50H to its equivalent
hexadecimal code which will be stored at RAM location 51H.

Suppose an 8-bit gray code is denoted as G7G6G5G4G3G2G1G0. Now this gray code can be converted
to corresponding binary number using the following process.

B7 = 0 G⊕ 7 = G7 B3 = B4 G⊕ 3

B6 = B7 G⊕ 6 = G7 ⊕ G6 B2 = B3 G⊕ 2

B5 = B6 G⊕ 5 B1 = B2 G⊕ 1

B4 = B5 G⊕ 4 B0 = B1 G⊕ 0

__
Department of Electronics & Communication Engineering

8051 205

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

The above expressions to convert gray to binary are shown pictorially in Fig-6.1 for 4-bit
representation.

Fig-6.1: Gray to binary conversion

It is being observed that any bit in the converted binary number depends on the previous binary bit.
Due to this reason B6 binary bit can not be determined unless B7 bit is calculated, B5 bit can only be
determined after the evaluation of B6 bit and so on. In this program a loop is iterated for 7 times to
convert the gray code to binary as shown below.

Iteration 1:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Gray code → 0 G7 G6 G5 G4 G3 G2 G1

Binary code1 →G7 = B7 B6 D5 D4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 2:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code1 → 0 B7 B6 D5 D4 D3 D2 D1

Binary code2 →G7 = B7 B6 B5 D4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 3:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code2 → 0 B7 B6 B5 D4 D3 D2 D1

Binary code3 →G7 = B7 B6 B5 B4 D3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

↑
Invalid

__
Department of Electronics & Communication Engineering

8051 206

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Iteration 4:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code3 → 0 B7 B6 B5 B4 D3 D2 D1

Binary code4 →G7 = B7 B6 B5 B4 B3 D2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

↑
Invalid

Iteration 5:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code4 → 0 B7 B6 B5 B4 B3 D2 D1

Binary code5 →G7 = B7 B6 B5 B4 B3 B2 D1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

↑
Invalid

Iteration 6:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code5 → 0 B7 B6 B5 B4 B3 B2 D1

Binary code6 →G7 = B7 B6 B5 B4 B3 B2 B1 D0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Invalid

Iteration 7:

Gray code → G7 G6 G5 G4 G3 G2 G1 G0

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕
Right shifted Binary code6 → 0 B7 B6 B5 B4 B3 B2 B1

Binary code7 →G7 = B7 B6 B5 B4 B3 B2 B1 B0

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

↑
Valid

It is being observed clearly that the Binary code7 thus achieved finally after 7th iteration is valid.

__
Department of Electronics & Communication Engineering

8051 207

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.8:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV R2,A

4 MOV R3,#07H

REPEAT CLR C

5 RRC A

6 XRL A,R2

7 DJNZ R3,REPEAT

8 INC R0

9 MOV @R0,A

10 HERE SJMP HERE

Result of Program 15.8:
SET1 ►
Input

Mem. Address Content Remarks

50 37 8-bit Gray code

SET2 ►
Input

Mem. Address Content Remarks

50 A3 8-bit Gray code

Output

Address Content Remarks

51 25 8-bit hexadecimal number

Output

Address Content Remarks

51 C2 8-bit hexadecimal number

__
Department of Electronics & Communication Engineering

8051 208

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.9: Write a program to add two 8-bit BCD numbers stored at memory locations 50H and 51H
respectively. Store the result of the BCD addition at memory locations 52H and 53H respectively
where 52H will hold the lower byte of the result and 53H will hold the higher byte of the result.

In this program two BCD numbers stored at RAM locations 50H and 51H are added together. As
the maximum value of 2-digit BCD number is 99, the maximum result of BCD addition will be 198
here. Although we are considering the BCD numbers, but a BCD number is basically a hexadecimal
number to 8051 microcontroller. For example the BCD number 99 is naturally considered as 99H
by the microcontroller. Therefore the addition of two BCD numbers such as (99 + 99) is basically
the addition of two hexadecimal numbers such as (99H + 99H) which gives 132H. But we should
get the BCD number 198 as a result of BCD addition. To convert 132H to our desired result (198H)
the instruction “DA A” (Decimal Adjust Accumulator) should be used just after performing addition
between 99H and 99H using the instruction “ADD”, because we know “DA A” converts the result
of two BCD addition into a BCD number. For example - if we add two BCD numbers 15 and 18,
then we get the following results.

BCD Addition We get the following
15 15
18 18

-------- -------
33 2D

Desired Result Wrong Result

From the above example it is clear that the result of the BCD addition may be incorrect. DAA
instruction rectifies this error and generate the correct result in BCD. In the above example if DAA
is used after the addition, it will give 33 as a result. Here one thing is important to mention that
DAA instruction should be used after ADD instruction.

Assembly Language Program 15.9:

SL. Label Instructions of 8051

1 MOV B,#00H

2 MOV R0,#50H

3 MOV A,@R0

4 INC R0

5 ADD A,@R0

6 DA A

7 JNC NOCARRY

8 INC B

__
Department of Electronics & Communication Engineering

8051 209

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

SL. Label Instructions of 8051

9 NOCARRY INC R0

10 MOV @R0,B

11 INC R0

12 MOV @R0,A

13 HERE SJMP HERE

Result of Program 15.9:
SET1 ►
Input

Mem. Address Content Remarks

50 34 2 digit BCD No1

51 15 2 digit BCD No2

SET2 ►
Input

Mem. Address Content Remarks

50 98 2 digit BCD No1

51 97 2 digit BCD No2

Output

Address Content Remarks

52 00 Higher Byte of Result

53 49 Lower Byte of Result

Output

Address Content Remarks

52 01 Higher Byte of Result

53 95 Lower Byte of Result

15.10: Write a program to add two 32-bit BCD numbers stored from memory locations 50H
onward and 54H onward respectively. Store the result of the BCD addition from memory
locations 58H onward where 58H will hold the least significant byte of the result and 5CH will
hold the most significant byte of the result.

Here 1st 32-bit BCD number will occupy 4 consecutive locations starting from 50H to 53H and 2nd

32-bit BCD number will occupy 4 consecutive locations starting from 54H to 57H. After the BCD
addition the result will be 5 bytes long, so it will be stored into 5 consecutive RAM locations
starting from 58H to 5CH. 5CH location will hold the most significant byte of the result which is
basically the carry of the BCD addition and 58H memory location will hold the least significant
byte of the result.

__
Department of Electronics & Communication Engineering

8051 210

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

The 1st bytes from both numbers are added and converted to BCD using “DA A” instruction, then
2nd bytes from both numbers are added along with the carry from 1st BCD addition and converted to
BCD using “DA A” instruction, after that 3rd bytes are added along with the carry from 2nd BCD
addition and converted to corresponding BCD and finally 4th bytes from both numbers are added
along with the carry from 3rd BCD addition and converted to BCD to achieve the 5 bytes long
result. Hence the BCD addition is performed 4 times and to implement this, a loop should be
iterated for 4 times as given in the following program.

Assembly Language Program 15.10:

SL. Label Instructions of 8051

1 MOV R3,#50H

2 MOV R4,#54H

3 MOV R1,#58H

4 MOV R2,#04H

5 CLR C

6 REPEAT MOV B,R3

7 MOV R0,B

8 MOV A,@R0

9 MOV B,R4

10 MOV R0,B

11 ADDC A,@R0

12 DA A

13 MOV @R1,A

14 INC R3

15 INC R4

16 INC R1

17 DJNZ R2,REPEAT

18 XRL A,A

19 ADDC A,#00H

20 MOV @R1,A

21 HERE SJMP HERE

__
Department of Electronics & Communication Engineering

8051 211

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.10:
SET1 ►
Input
 BCD No1 BCD No2

Addr Content Remarks Addr Content Remarks

50 66 Byte1 54 99 Byte1

51 77 Byte2 55 88 Byte2

52 88 Byte3 56 77 Byte3

53 99 Byte4 57 66 Byte4

SET2 ►
Input
 No1 No2

Addr Content Remarks Addr Content Remarks

50 44 Byte1 54 17 Byte1

51 89 Byte2 55 20 Byte2

52 57 Byte3 56 49 Byte3

53 12 Byte4 57 52 Byte4

 Output

Result

Addr Content Remarks

58 65 Byte1

59 66 Byte2

5A 66 Byte3

5B 66 Byte4

5C 01 Byte5

 Output
Result

Addr Content Remarks

58 61 Byte1

59 09 Byte2

5A 07 Byte3

5B 65 Byte4

5C 00 Byte5

Exercise

1) Write a program to convert a 2-digit packed BCD number stored at 50H to its equivalent packed
Excess 3 codes which should be placed at RAM location 51H.

[Example: Packed 2-digit BCD: 92 → Packed 2-digit Excess 3 Code: C5]

2) Write a program to convert a 2-digit packed Excess 3 code stored at 50H to its equivalent 2-digit
packed BCD number which should be placed at RAM location 51H.

__
Department of Electronics & Communication Engineering

8051 212

College of Engineering and Management, Kolaghat.
CH 16: Programs on Look up Table

16. Programs on Look up Table

16.1: Write a program to determine the square of a number which is stored at RAM location 50H
using Look up Table. Also store the square of the number at RAM location 51H.

Although the square of a number can be evaluated by multiplying the number with itself, but here
the square of a number is determined by using look up table to develop the concept of the look up
table. Here a portion of the program memory has been used to store the square of the numbers 00H
to 0FH. We can not store the square of a number beyond 0F (15 in Decimal), because it exceeds the
maximum range of a 8-bit number, FFH (255 in Decimal). In this program the look up table has
been started from the memory location 400H onward in the code memory or the program memory
of 8051 microcontroller as shown below.

Look up Table

Program Memory
Address

Square of 8-bit number

400H 00H (0) ←square of 0

401H 01H (1) ←square of 1

402H 04H (4) ←square of 2

403H 09H (9) ←square of 3

404H 10H (16) ←square of 4

405H 19H (25) ←square of 5

406H 24H (36) ←square of 6

407H 31H (49) ←square of 7

408H 40H (64) ←square of 8

409H 51H (81) ←square of 9

40AH 64H (100) ←square of 10

40BH 79H (121) ←square of 11

40CH 90H (144) ←square of 12

40DH A9H (169) ←square of 13

40EH C4 (196) ←square of 14

40FH E1H (225) ←square of 15

The above mentioned square of numbers 00H – 0FH will be stored from 400H – 40FH into the
flash memory of 8051 microcontroller using the following assembler directives at the end of the
program in Keil.

__
Department of Electronics & Communication Engineering

8051 213

College of Engineering and Management, Kolaghat.
CH 16: Programs on Look up Table

ORG 0400H
DB 00H,01H,04H,09H,10H,19H,24H,31H,40H,51H,64H,79H,90H,0A9H,0C4H,0E1H

To get the square of a number, that particular number is added with the starting address of the look
up table to get the memory location where the square of that number is saved. Now the content of
that memory address is retrieved to get the square of the number. To retrieve the square number
from Look up table into code/ program memory the instruction “MOVC A,@A+DPTR” will be
used, where DPTR will hold the starting address of the look up table and the number whose square
is to be determined will be stored into accumulator. (A + DPTR) will give the address where the
square of a given number is stored. After the execution of “MOVC A,@A+DPTR” the accumulator
will hold the square value which will be stored at the desired memory location.

Assembly Language Program 16.1:

SL. Label Instructions of 8051

1 MOV R0,#50H

2 MOV A,@R0

3 MOV DPTR,#400H

4 MOVC A,@A+DPTR

5 INC R0

6 MOV @R0,A

7 HERE SJMP HERE

Result of Program 16.1:
SET1 ►
Input

Mem. Address Content Remarks

50 09 Number

SET2 ►
Input

Mem. Address Content Remarks

50 0F Number

Output

Address Content Remarks

51 51 Square of the number

Output

Address Content Remarks

51 E1 Square of the number

__
Department of Electronics & Communication Engineering

8051 214

College of Engineering and Management, Kolaghat.
CH 16: Programs on Look up Table

Exercise

1) Suppose a Common Cathode 7-segment display is connected to Port2 of 8051 microcontroller
via a 74373 latch which is made enabled already by setting LE pin high. The different pins of the
7-segment display is connected to the Port2 as follows.
P2.0 → a segment
P2.1 → b segment
P2.2 → c segment
P2.3 → d segment
P2.4 → e segment
P2.5 → f segment
P2.6 → g segment
P2.7 → h dot point

Now write a program to convert a single digit BCD number stored at memory location 50H to its
equivalent 7 segment display code using look up table and send the 7-segment equivalent code
through Port2 to show the BCD number on the 7-segment display.

2) Suppose a Common Anode 7-segment display is connected to Port2 of 8051 microcontroller via
a 74373 latch which is made enabled already by setting LE pin high. The different pins of the 7-
segment display is connected to the Port2 as follows.
P2.0 → a segment
P2.1 → b segment
P2.2 → c segment
P2.3 → d segment
P2.4 → e segment
P2.5 → f segment
P2.6 → g segment
P2.7 → h dot point

Now write a program to convert a single digit BCD number stored at memory location 50H to its
equivalent 7 segment display code using look up table and send the 7-segment equivalent code
through Port2 to show the BCD number on the 7-segment display.

__
Department of Electronics & Communication Engineering

8051 215

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

17. Programs on String Manipulation

17.1: Suppose a string is stored from memory location 50H to 57H. Write a program to reverse
the string and store the reversed string starting from 60H onward.

Suppose a string “0123456789ABCDEF” is stored from memory location 50H to 57H as shown in
Fig-8.1. After the execution of the program the string will be reversed and the reversed string
“FEDCBA9876543210” will be stored starting from 60H onward as shown in Fig-8.2.

Mem. Address Content Mem. Address Content

50 01 60 FE

51 23 61 DC

52 45 62 BA

53 67 63 98

54 89 64 76

55 AB 65 54

56 CD 66 32

57 EF 67 10

 Fig-8.1: Source string Fig-8.2: Reversed string

Here every 8-bit data is to be copied starting from memory location 57H to accumulator, swap the
nibbles of the accumulator by using SWAP A instruction and save the swapped data starting from
memory location 60H onward. That means the source string should be copied from memory
location 57H to 50H and the reversed string should be stored from memory location 60H to 67H.

Assembly Language Program 17.1:

SL. Label Instructions of 8051

1 MOV R2,#0AH

2 MOV R0,#57H

3 MOV R1,#60H

4 REPEAT MOV A,@R0

5 SWAP A

6 MOV @R1,A

__
Department of Electronics & Communication Engineering

8051 216

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

7 DEC R0

8 INC R1

9 DJNZ R2,REPEAT

10 HERE SJMP HERE

Result of Program 17.1:

SET1 ►
Input

Source String

Mem. Address Content Remarks

50 01

51 23

52 45

53 67

54 89

55 AB

56 CD

57 EF

SET2 ►
Input

Source String

Mem. Address Content Remarks

50 1F

51 2E

52 3D

53 4C

54 5B

55 6A

56 79

57 88

Output
Reversed String

Mem. Address Content Remarks

60 FE

61 DC

62 BA

63 98

64 76

65 54

66 32

67 10

Output
Reversed String

Mem. Address Content Remarks

60 88

61 97

62 A6

63 B5

64 C4

65 D3

66 E2

67 F1

__
Department of Electronics & Communication Engineering

8051 217

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

17.2: Suppose a string is stored from memory location 50H to 57H. Write a program to check
whether the string is palindrome or not. If the string is palindrome, 01H should be stored at
memory location 58H, otherwise 00H should be stored in the same memory location.

A string is said to be palindrome when it matches exactly with its reversed form. For example – a
string “ABCDEF99FEDCBA” is palindrome, because if it is written in reverse order it will be the
same string “ABCDEF99FEDCBA”. Now for 8051 microcontroller a string always consists of even
no. of characters, because each memory location stores 8-bit data which includes two characters.
Hence for 8051 it is not possible to store a string which comprises odd no. of characters. Now the
question arises how to check it. One thing is important to observe that every pair of characters from
starting position is just reverse of the pair of characters from end position. In case of the above
string “ABCDEF99FEDCBA” AB from starting positions is just reverse of BA from end position.
Similarly CD is reversed of DC and EF is also reversed form of FE.

Here two cases may arise – 1) no. of memory locations consumed by the string is even and 2) no. of
memory locations consumed by the string is odd. This implies that every pair of characters is
reversed and compared with its counterpart pair of characters up to n/2 for even no. of memory
locations and (⌊n/2⌋+1) for odd no. of memory locations where n is the no. of memory locations
consumed by the string. For examples - the string “ABCDEF99FEDCBA” takes 7 (odd)
consecutive memory locations. That’s why the checking has to be performed up to 4 th memory
location. At any stage if the reversed pair of characters does not match with its corresponding pair
of characters, the string will not be palindrome. If the reversed pair of characters matches with its
corresponding pair of characters up to n/2 or (⌊n/2⌋+1), the string will be a palindrome.
According to the condition of the program 01H will be stored at the memory location 58H, if the
string is palindrome and 00H will be stored if the string is not palindrome. In this program the
string occupies 8 consecutive memory locations. That’s why the comparisons will be carried out up
to n/2 no. of pair of characters and to accomplish this the counter register should be initialized with
4 (8 / 2).

Assembly Language Program 17.2:

SL. Label Instructions of 8051

1 MOV R2,#04H

2 MOV R0,#50H

3 MOV R1,#57H

4 REPEAT MOV A,@R0

5 SWAP A

6 MOV B,@R1

7 CJNE A,B,NOTEQUAL

__
Department of Electronics & Communication Engineering

8051 218

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

8 INC R0

9 DEC R1

10 DJNZ R2, REPEAT

11 MOV A,#01H

12 MOV 58H,A

13 SJMP HERE

14 NOTEQUAL MOV A,#00H

15 MOV 58H,A

16 HERE SJMP HERE

Result of Program 17.2:

SET1 ►
Input

Source String

Mem. Address Content Remarks

50 AB

51 CD

52 EF

53 12

54 21

55 FE

56 DC

57 BA

Output

Mem. Address Content Remarks

58 01 Palindrome

__
Department of Electronics & Communication Engineering

8051 219

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET2 ►
Input

Source String

Mem. Address Content Remarks

50 AB

51 CD

52 EF

53 12

54 34

55 FE

56 DC

57 BA

Output

Mem. Address Content Remarks

58 00 Not Palindrome

17.3: Write a program to check whether a string stored from RAM location 50H onward contains
another sub-string stored from RAM location 60H onward or not. Store 01H into the memory
location 70H if the main string contains the sub-string, otherwise store 02H into the same
memory location.

Here one string known as main string is stored from the memory location 50H and another string
known as sub-string is stored starting from memory location 60H. Obviously the length of the sub-
string will be less or equal to the length of the main string. Here four cases may happen.

Case 1: In this case no matching happens between the main string and sub-string. For example – if
the main string is “1234567890ABCDEF9988” and the sub-string is “2233445566”, it is observed
that there is no matching between the main string and the sub-string. Therefore 02H should be
stored into the memory location 70H to indicate the mismatch between the two strings.

Case 2: Here partial matching occurs between the main string and the sub-string. For example – if
the main string is “1234567890ABCDEF9988” and the sub-string is “ABCDEF1122”, it is
observed that a portion of sub-string “ABCDEF” is found into the main string. As entire sub-string
is not found into the main string, it results mismatch between the main string and the sub-string.
Therefore 02H will be stored into the memory location 70H.

__
Department of Electronics & Communication Engineering

8051 220

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

Case 3: In this case the entire sub-string is found into the main string which results successful
matching between the two strings. Hence 01H should be stored in the memory location 70H. For
example – complete matching occurs if the main string becomes “ 1234567890ABCDEF9988” and
the sub-string is “ABCDEF9988”.

Case 4: This case consists of both partial matching and complete matching. As complete matching
is found finally, 01H will be stored into the same memory location according to the program
criteria. For example – if main string is “ 12ABCD7890ABCDEF9988” and the sub-string is
“ABCDEF9988”, then partial matching occurs for “ABCD” from 2nd position whereas complete
matching happens for “ABCDEF9988” from 6th position.

Now these above mentioned four cases must be handled in the program to check the matching of
two strings. If the no. of 8-bit data in the main string is m and the no. of 8-bit data in the sub-string
is n, then there will be no chance of finding the whole sub-string inside the main string beyond (m –
n + 1)th data. Therefore we have to compare up to (m – n + 1)th data in the main string, beyond of
that there is no chance to get the entire sub-string into the main string. The following example will
clearly demonstrate this situation.

Suppose main string “1234567890ABCDEF8899” has 10 no. of 8-bit data and sub-string
“ABCDEF8899” has 5 no. of 8-bit data. Therefore we have to search for matching of data up to 6 th

(10 – 5 + 1) position i.e. up to the data “AB” into the main string, because beyond of that there is no
possibility to get the complete matching of sub-string “ABCDEF8899”.

Here 1st 8-bit data of the sub-string is started to be compared with all the 8-bit data of main string
consecutively from 1st data to (m – n + 1)th data of the main string. If matching is found at any
stage, the rest of the data from the sub-string are compared with the data of the main string
consecutively. That means, if the 1st data of sub-string is matched with any data of main string, then
the comparisons between the pairs of the data – one from sub-string and other from main string are
performed successively until the end of the sub-string or a mismatch is found. If every pair of data
from the sub-string and the main string are matched perfectly, then it can be concluded that the sub-
string is found into the main string and if any mismatch is found, then the 1st data from sub-string
and the the data of main string where mismatch was found should be compared once again to get
the entire sub-string inside the remaining part of the main string. Here one important point to
consider that if mismatch is found after (m – n + 1)th data of the main string, then comparisons are
not carried out further to imply the absence of the sub-string inside the main string.

In the following program we have taken a main string with 10 no. of data and the sub-string with 5
no. of data. Therefore comparisons should continue up to 6 th data of the main string. To fulfill this
purpose register R2 will act as counter of main string and initialized with 06H. Similarly register R3
is used as counter of sub-string and initialized with 05H. In addition to this, register R0 has been
used as memory pointer of main string and register R1 has been used as memory pointer for sub-
string in this program. If a match is found, register R2 and R3 both will be decremented by one for
every iteration, otherwise register R2 only will be decremented by one for each iteration. There are
two loops in this program – one is controlled by the counter register R2 and other is controlled by

__
Department of Electronics & Communication Engineering

8051 221

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

the counter register R3. The loop of counter register R2 will continue until a matching between the
1st data from the sub-string and any data [up to (m – n + 1)th data] from the main string is found. On
the other hand if a matching is found, then the loop of counter register R3 will be initiated. If the
loop of register R3 is terminated by decreasing R3 to zero, it is clear that the sub-string is found
inside the main string and if the loop of register R2 is terminated for R2 = 0, then the sub-string is
not found into the main string.

Assembly Language Program 17.3:

SL. Label Instructions of 8051

1 MOV R2,#06H

2 MOV R0,#50H

3 MOV R1,#60H

4 REPEAT MOV A,@R0

5 MOV B,@R1

6 CJNE A,B,NOTEQUAL

7 MOV R3,#05H

8 AGAIN MOV A,@R0

9 MOV B,@R1

10 CJNE A,B,INEQAFTERMATCH

11 INC R0

12 INC R1

13 MOV A,R2

14 CJNE A,#01H,AFTER

15 AFTER JC BYPASS

16 DEC R2

17 BYPASS DJNZ R3,AGAIN

18 MOV A,#01H

19 SJMP FINAL

20 INEQAFTERMATCH DEC R0

21 INC R2

__
Department of Electronics & Communication Engineering

8051 222

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

22 MOV R1,#60H

23 NOTEQUAL INC R0

24 DJNZ R2,REPEAT

25 MOV A,#02H

26 FINAL MOV 70H,A

27 HERE SJMP HERE

Result of Program 17.3:
SET1 ► (Corresponds to Case 1)

I nput

 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 78 63 88

54 87 64 99

55 65

56 43

57 21

58 CD

59 EF

 Output

Address Content Remarks

70 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8051 223

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET2 ► (Corresponds to Case 1)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 78 63 88

54 87 64 99

55 65

56 AB

57 CD

58 EF

59 88

SET3 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 78 63 88

54 AB 64 99

55 CD

56 AB

57 CD

58 EF

59 88

Output

Address Content Remarks

70 02 Sub-string not found

Output

Address Content Remarks

70 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8051 224

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET4 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 AB 62 EF

53 CD 63 88

54 56 64 99

55 78

56 87

57 EF

58 88

59 99

SET5 ► (Corresponds to Case 2)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 AB 63 88

54 CD 64 99

55 AB

56 AB

57 CD

58 EF

59 88

Output

Address Content Remarks

70 02 Sub-string not found

Output

Address Content Remarks

70 02 Sub-string not found

__
Department of Electronics & Communication Engineering

8051 225

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET6 ► (Corresponds to Case 3)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 78 63 88

54 87 64 99

55 AB

56 CD

57 EF

58 88

59 99

SET7 ► (Corresponds to Case 3)

I nput
 Main String Sub-String

Address Content Address Content

50 AB 60 AB

51 CD 61 CD

52 EF 62 EF

53 88 63 88

54 99 64 99

55 12

56 34

57 56

58 78

59 87

Output

Address Content Remarks

70 01 Sub-string found

Output

Address Content Remarks

70 01 Sub-string found

__
Department of Electronics & Communication Engineering

8051 226

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET8 ► (Corresponds to Case 4)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 AB 61 CD

52 CD 62 EF

53 AB 63 88

54 CD 64 99

55 EF

56 88

57 99

58 34

59 56

SET9 ► (Corresponds to Case 4)

I nput
 Main String Sub-String

Address Content Address Content

50 12 60 AB

51 34 61 CD

52 56 62 EF

53 AB 63 88

54 CD 64 99

55 AB

56 CD

57 EF

58 88

59 99

Output

Address Content Remarks

70 01 Sub-string found

Output

Address Content Remarks

70 01 Sub-string found

__
Department of Electronics & Communication Engineering

8051 227

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

17.4: Suppose two strings are stored into two memory blocks - 50H to 59H and 60H to 63H
respectively. Write a program to insert the second string into the first string starting from the
memory location 53H.

It can be observed that the second string stored from 60H to 63H has four 8-bit data and the first
string stored from 50H to 59H has ten 8-bit data. To insert the second string at the memory location
53H of the first string, all the data of RAM locations starting from 53H to 59H must be shifted into
the memory locations 57H to 5DH first to make a space of 4 bytes so that the second string can be
accommodated into that memory space. After shifting the data the entire second string should be
copied from the memory locations 60H to 63H into the memory locations 53H to 56H.

Now to make a space of four consecutive memory locations starting from 53H to 56H, seven 8-bit
data of first string from the memory locations 53H to 59H should be shifted to the memory
locations 57H to 5DH. Hence register R2 has been considered as a counter and initialized with 07H.
After shifting these seven data, the four 8-bit data of the second string stored from the memory
location 60H to 63H should be copied into the memory locations 53H to 56H. Again the register R2
will be initialized with 04H to act as a counter and will be used to transfer these four data. Thus the
second string will be inserted into the first string from the memory location 53H.

Assembly Language Program 17.4:

SL. Label Instructions of 8051

1 MOV R2,#07H

2 MOV R0,#59H

3 MOV R1,#5DH

4 REPEAT MOV A,@R0

5 MOV @R1,A

6 DEC R0

7 DEC R1

8 DJNZ R2,REPEAT

9 MOV R2,#04H

10 MOV R1,#60H

11 AGAIN INC R0

12 MOV A,@R1

13 MOV @R0,A

14 INC R1

__
Department of Electronics & Communication Engineering

8051 228

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

15 DJNZ R2,AGAIN

16 HERE SJMP HERE

Result of Program 17.4:
SET1 ►

 I nput
 1st String 2nd String

Address Content Address Content

50 11 60 BB

51 22 61 CC

52 33 62 DD

53 44 63 EE

54 55

55 66

56 77

57 88

58 99

59 AA

Output

Address Content

50 11

51 22

52 33

53 BB

54 CC

55 DD

56 EE

57 44

58 55

59 66

5A 77

5B 88

5C 99

5D AA

__
Department of Electronics & Communication Engineering

8051 229

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET2 ►
 I nput

 1st String 2nd String

Address Content Address Content

50 12 60 BC

51 23 61 CD

52 34 62 DE

53 45 63 EF

54 56

55 67

56 78

57 89

58 9A

59 AB

Output

Address Content

50 12

51 23

52 34

53 BC

54 CD

55 DE

56 EF

57 45

58 56

59 67

5A 78

5B 89

5C 9A

5D AB

Exercise

1) Write a program to check whether two strings are identical or not. Consider the two strings
having same length of 16 characters are stored from memory location 50H onward and 60H
onward respectively.

2) Write a program to replace all the characters ‘A’ with the character ‘D’ in a string which is stored
from the memory location 40H onward.

3) Suppose two strings are stored into two memory blocks - 50H to 59H and 60H to 65H
respectively. Write a program to concatenate these two strings and store the concatenated string
starting from memory location 50H onward

__
Department of Electronics & Communication Engineering

8051 230

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

18. Programs of Interfacing with LEDs

18.1: Write a program for 8051 microcontroller to blink a set of 8 LEDs connected to Port 2 with
some patterns considering the dalay time of 1 second.

Eight LEDs are connected to Port 2 of 8051 microcontroller with current limiting resistors of 270Ω.
The power supply +5V is delivered to the 8051 mounting board KSR85152-MB1 as well as the
LED circuits by the USB power supply of PC. That’s why the microcontroller 8051 is burnt here
first using USBASP programmer disconnecting the RESET circuit with only JP4 jumper open and
then all the jumpers JP1, JP2, JP3, JP4 in the 8051 mounting board are made shorted to execute the
dumped program with +5V supply from USBASP programmer. The circuit diagram during the
execution of the flashed program into the program memory of 8051 is shown in Fig-18.1.

Fig- 18 .1: Circuit diagram of LED interfacing with 8051 after burning the program

Here two 8-bit patterns of 55H and AAH to glow the LEDs are followed with a time delay of 1
second. That means, the LEDs will glow with a pattern 55H and AAH alternately with a delay of 1
second. Now to create 1 second time delay, a delay subroutine should be written in assembly
language. This delay subroutine can be written in two ways – either by using instructions of 8051 or
by using in-built Timer of 8051. The delay subroutine of 1 second using the instructions of 8051
along with its calculation is given below in Method 1.

__
Department of Electronics & Communication Engineering

8051 231

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Method 1: Delay Subroutine using the instructions of 8051

Label Instructions of 8051 No. of Machine Cycle

MOV R2, #n 1

L2: MOV R3, #255 1

L3: MOV R4, #255 1

L4: DJNZ R4, L4 2

DJNZ R3, L3 2

DJNZ R2, L2 2

RET 2

For 8051 microcontroller 1 machine cycle (MC) = 12 × TOSC = 12 / fOSC, where fOSC is the operating
frequency of 8051 or the frequency of the crystal connected to 8051. In our case fOSC = 11.0592
MHz. Therefore here 1 machine cycle = 1.085 μs.

In the above subroutine three nested loops are used. The inner-most loop (DJNZ R4, L4) will be
iterated for 255 times, the loop (DJNZ R3, L3) including the inner-most loop will execute for 255
times and the outer-most loop (DJNZ R2, L2) including the two inner loops will execute x times.

Total no. of MCs taken by the subroutine =1 + ((1+ ((1 + (255 × 2) + 2) × 255) + 2) × n) + 2

 = 130818 × n + 3

Now total time taken by the subroutine = (130818 × n +3) × 1.085 μs which will be equal to 1
second.

 So, (130818 × n +3) × 1.085 = 106

or, (130818 × n +3) = 921659

.·. n = 7

If we replace n by 7 in the subroutine, it will generate 1 second delay when it will be executed for 1
time. To create 1 second delay this subroutine will be called using the instruction “ACALL
DELAY”. Now the entire 8051 program is written below including the above mentioned delay
subroutine.

__
Department of Electronics & Communication Engineering

8051 232

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Assembly Language Program 18.1 (Method 1):

SL. Label Instructions of 8051

1 MOV A, #55H

2 AGAIN: MOV P2, A

3 ACALL DELAY

4 CPL A

5 SJMP AGAIN

6 DELAY: MOV R2, #7

7 L2: MOV R3, #255

8 L3: MOV R4, #255

9 L4: DJNZ R4, L4

10 DJNZ R3, L3

11 DJNZ R2, L2

12 RET

Method 2: Delay subroutine using Timer of 8051

8051 has two timers, Timer 0 and Timer 1. They can be used as timer or event counter. The purpose
of timer is to create a delay very accurately where as the counter will count the no. of pulses coming
at the pin T0 (pin no. 14) or T1 (pin no. 15) of 8051 microcontroller. Timer 0 and Timer 1 both are
16 bit wide. 16 bit register of Timer 0 can be accessed as lower byte and higher byte whereas the
lower byte register is called TL0 and the higher byte register is called TH0. Similarly lower byte
register and higher byte register of Timer1 are called TL1 and TH1 respectively. There are four
modes of timer namely Mode 0, Mode 1, Mode 2 and Mode 3. Among these four modes we are
interested to Mode 1 in our laboratory purpose. Mode 1 of timer is also called 16-bit timer mode. In
Mode 1 TH0 and TL0 of Timer 0 together hold the 16-bit initial value from where Timer 0 starts to
increase its value i.e. with each clock pulse the 16-bit value of Timer 0 will be incremented by one.
Timer 0 is started by making the bit TR0 inside TCON register high. In this way the value of Timer
0 will reach to FFFFH. With one more clock pulse the value of Timer 0 becomes 0000H from
FFFFH. This incident is called roll over of the timer. When the roll over happens, a bit TF0 inside
TCON register transits from low to high. The program should check the status of this bit TF0
continuously. As soon soon TF0 becomes high, the Timer 0 is to be stopped by making TR0 low.
The same above mentioned incidents are happened for Timer 1 also.

Now the value of a timer takes (12 × TOSC) time to be incremented by 1. If the crystal frequency is
11.0592 MHz, (12 × TOSC) will be equal to 1.085 μs. This implies that the timer will take 1.085 × p
μs time to be incremented for p times. The value of p depends on the initial value of the timer. If the

__
Department of Electronics & Communication Engineering

8051 233

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

timer is initialized with n, then the timer will be incremented for (65535 – n +1) times. Here the
timer will take (65536 – n) × 1.085 μs which will be treated as a delay.

.·. Delay = (65536 – n) × 12 × TOSC

 =
(65536−n)×12

f OSC
 where n is the initial value and fOSC is the crystal frequency

If the delay to be created is known, then the initial value n of the timer can be determined using the
above mentioned formula. For example if fOSC = 11.0592 MHz, the initial value is considered as n
and the delay to be created is 50 ms, then we get the following equation.

(65536−n)×12
f OSC

= 50 ms

or, (65536 – n) × 1.085 μs = 50 × 103 μs

or, 65536 – n = 46083 .·. n = 19453 = 4BFDH

Therefore the initial value of the timer is 4BFDH. If Timer 0 is used, TH0 and TL0 are to be loaded
with 4BH and FDH respectively. Now the modes of Timer 0 and Timer 1 can be changed with the
help of TMOD register which is given below in Fig-18.2.

Fig-18.2: TMOD Register of 8051 microcontroller

Therefore from Fig-18.2 it is clear that TMOD register must be initialized with 01H to operate
Timer 0 in Mode1.

__
Department of Electronics & Communication Engineering

8051 234

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Fig-18.3: TCON Register of 8051 microcontroller

In this program we are going to create delay of 1 second using Timer 0 in Mode1. The Timer 0 will
generate maximum delay when it will be initialized with 00H. Therefore with crystal frequency of
11.0592 MHz and TH0 = 00H and TH0 = 00H, the Timer 0 gives maximum delay of 71 ms which
is obviously less than our desired delay of 1 second. Therefore using Timer 0 only we can not
generate a time delay of 1 second. To solve this problem, we have to generate a delay of 50 ms
using Timer 0 and iterate the subroutine 20 times to create the delay of 1 second. The delay
calculation using Timer 0 is given below.

(65536−n)×12
f OSC

= 50 ms [fOSC = 11.0592 MHz]

or, (65536 – n) × 1.085 μs = 50 × 103 μs

or, 65536 – n = 46083

.·. n = 19453 = 4BFDH

Therefore TH0 = 4BH, TL0 = FDH and TMOD = 01H
Now the same program (already written in Method 1) is rewritten using Timer 0 in Mode1 for delay
subroutine.

__
Department of Electronics & Communication Engineering

8051 235

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Assembly Language Program 18.1 (Method 2):

SL. Label Instructions of 8051

1 MOV P2, #55H

2 AGAIN: ACALL DELAY

3 XRL P2, #0FFH

4 SJMP AGAIN

5 DELAY MOV TMOD, #01H

6 MOV R2, #20

7 REPIT: MOV TL0, #0FDH

8 MOV TH0, #4BH

9 SETB TR0

10 HERE: JNB TF0, HERE

11 CLR TR0

12 CLR TF0

13 DJNZ R2, REPIT

14 RET

C Program 18.1 (Method 2):

#include<reg51.h>
void Delay();

void main()
{

P2 = 0x55;

while(1)
{

Delay();
P2 = ~P2;

}
}

__
Department of Electronics & Communication Engineering

8051 236

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

C Program 18.1 (Method 2):

void Delay()
{

unsigned char i;
TMOD = 0x01;
for(i=0;i<20;i++)
{

TL0 = 0xFD;
TH0 = 0x4B;
TR0 = 1;
while(TF0==0);
TR0 = 0;
TF0 = 0;

}
}

Method 3: Delay subroutine using interrupt of Timer for 8051

In this method the delay is created using any one of the timers (Timer 0 or Timer 1) where interrupt
happens due to the occurrence of overflow. Before explaining this timer interrupt a brief
introduction to the 8051 interrupts are given below.

8051 microcontroller has six interrupts including the reset which is not available to the programmer.

➢ Reset - When the reset pin is activated, 8051 jumps to the address location 0000H which is the
starting address of the interrupt vector table (IVT) of reset. This IVT of reset ends at memory
location 0002H. Therefore the size of IVT for reset is 3 bytes. Basically it is the power-up reset.

➢ Two interrupts for Timer 0 and Timer 1 – There are two interrupts, one for Timer 0 and other
for Timer 1 which occurs due to the overflow of the timers. As soon as TF0 flag of Timer 0 is
set due to the overflow of Timer 0, an interrupt occurs and 8051 jumps to the address 000BH
which is the interrupt vector address of Timer 0. Similarly due to the overflow in Timer 1 the
program will jumps to the address 001BH which is the starting address of the Timer 1 IVT.

➢ Two external hardware interrupts INT0 and INT1 – Pin no. 12 (P3.2) and 13 (P3.3) are used
for external hardware interrupts INT0 and INT1 respectively. Any external device may interrupt
the 8051 microcontroller through these pins. Memory locations 0003H and 0013H in the
interrupt vector table are used for INT0 and INT1 respectively. INT0 and INT1 are also known
as EX0 and EX1 respectively.

➢ Serial communication interrupt – Serial communication has a single interrupt that belongs to
both receive and transmit. Interrupt vector location 0023H is used for serial communication.

__
Department of Electronics & Communication Engineering

8051 237

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Table-18.1: The entire interrupt vector table of 8051 microcontroller

Interrupt PROM Location 8051 IC Pin Flag Clearing

Reset 0000H 9 Auto

External hardware interrupt 0 (INT0) 0003H 12 (P3.2) Auto

Timer 0 interrupt (TF0) 000BH Auto

External hardware interrupt 1 (INT1) 0013H 13 (P3.3) Auto

Timer 1 interrupt (TF1) 001BH Auto

Serial COM interrupt (RI and TI) 0023H Programmer clears it

Enabling and disabling interrupts – Upon reset the 8051 microcontroller disables all the five
interrupts except reset. Therefore it is the responsibility of the programmer to enable one or more
interrupts according to his requirement. The interrupts are enabled or disabled with the help of a
register called Interrupt Enable register (IE). Note that IE is a bit-addressable register.

IE: Interrupt Enable Register

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.0

EA -- ET2 ES ET1 EX1 ET0 EX0

D7 D6 D5 D4 D3 D2 D1 D0

EA: If EA = 0 all the interrupts are disabled i.e. no interrupt is acknowledged by 8051
If EA = 1 interrupts are individually enabled or disabled by setting or clearing its enable bit

ET2: If ET2 = 0 Timer 2 overflow or capture interrupt is disabled (only for 8052)
If ET = 1 Timer 2 overflow or capture interrupt is enabled (only for 8052)

ES: If ES = 0 serial port interrupt is disabled
If ES = 1 serial port interrupt is enabled

ET1: If ET1 = 0 Timer 1 overflow interrupt is disabled
If ET1 = 1 Timer 1 overflow interrupt is enabled

EX1: If EX1 = 0 external interrupt INT1 is disabled
If EX1 = 1 external interrupt INT1 is enabled

ET0: If ET0 = 0 Timer 0 overflow interrupt is disabled
If ET0 = 1 Timer 0 overflow interrupt is enabled

EX0: If EX0 = 0 external interrupt INT0 is disabled
If EX0 = 1 external interrupt INT0 is enabled

Fig.18.2: Interrupt Enable Register

__
Department of Electronics & Communication Engineering

8051 238

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF is raised and the
microcontroller is interrupted and jumps to the interrupt vector table to service the ISR written by
the programmer. When the microcontroller jumps to the ISR, it clears the TF flag automatically.
After completing the ISR it returns back to the instruction which was being executed at that time.

In this case we have used Timer 0 to generate the delay of 1 sec and Timer 0 Interrupt (TF0) is used
to sense the roll over of Timer 0 with the help of interrupt. As interrupt is used here, the memory
location 0000H which is basically the vector address of Reset interrupt, can not the used for storing
the program code. That’s why a jump instruction is used at 0000H to transfer the program sequence
to any other location where the program starts to be stored. At the same time another jump
instruction is stored at the vector address 000BH of Timer 0 Interrupt to transfer the program
sequence to the ISR when the microcontroller is being interrupted for Timer 0 overflaw. The delay
subroutine is written using Timer 0 inside the ISR. The delay calculation for 1 sec is identical as
described in Method 2. As a result, after every 50 ms time delay an interrupt is triggered due to the
overflow of Timer 0. Thus a delay of 1 sec is created after triggering Timer 0 Interrupt for 20 times.
To enable Timer 0 Interrupt the following bit pattern is to be set for IE register.

1 0 0 0 0 0 1 0

EA -- ET2 ES ET1 EX1 ET0 EX0

D7 D6 D5 D4 D3 D2 D1 D0

Therefore it is being observed clearly that 82H should to loaded to IE register to enable Timer 0
Interrupt. The implementation of same delay creation program using Timer 0 overflow interrupt is
given below.

Assembly Language Program 18.1 (Method 3):

SL. Label Instructions of 8051

1 ORG 0000H

2 LJMP MAIN

3

4 ORG 000BH

5 LJMP ISR

6

7 ORG 0030H

8 MAIN: MOV P2, #55H

9 MOV TMOD, #01H

10 MOV TL0, #0FDH

__
Department of Electronics & Communication Engineering

8051 239

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

SL. Label Instructions of 8051

11 MOV TH0, #4BH

12 MOV IE, #82H

13 MOV R2, #20

14 SETB TR0

15 HERE: SJMP HERE

16

17 ISR: CLR TR0

18 DJNZ R2, SKIP

19 XRL P2,#0FFH

20 MOV R2, #20

21 SKIP: MOV TL0, #0FDH

22 MOV TH0, #4BH

23 SETB TR0

24 RETI

25 END

Writing Interrupt Service Routine (ISR) in C: 8051 C compiler (Keil) assigns a unique number to
each interrupt in 8051 microcontroller. To implement ISR for 8051 using C language the unique
interrupt number is placed after the keyword ‘interrupt’ in case of ISR (interrupt function) definition
as given below.

void ISR_Name() interrupt x // x is the unique interrupt number
{

statement 1;
statement 2;
 :
 :
statement n;

}

Note: In case of ISR implementation in C for 8051 in Keil prototype declaration of ISR is not
allowed, although it is permitted for normal user-defined function.

__
Department of Electronics & Communication Engineering

8051 240

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Table-18.2: Different interrupts along with its unique interrupt number

Interrupt Unique Interrupt Number

External hardware interrupt 0 (INT0) 0

Timer 0 interrupt (TF0) 1

External hardware interrupt 1 (INT1) 2

Timer 1 interrupt (TF1) 3

Serial COM interrupt (RI and TI) 4

Timer 2 Interrupt (TF2) (only for 8052) 5

C Program 18.1 (Method 3):

#include<reg51.h>
#define TCOUNT 20

void Delay() interrupt 1
{

static unsigned char i = TCOUNT;
TR0 = 0;
i--;
if(i == 0)
{

P2 = ~P2;
i = 20;

}
TL0 = 0xFD;
TH0 = 0x4B;
TR0 = 1;

}
void main()
{

P2 = 0x55;
TMOD = 0x01;
TL0 = 0xFD;
TH0 = 0x4B;
IE = 0x82;
TR0 = 1;

for(;;);
}

__
Department of Electronics & Communication Engineering

8051 241

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

18.2: Write a program for 8051 microcontroller to blink an LED connected to P2.0 with a dalay
time of 1 second.

In this case the circuit shown in Fig-18.1 will work. The LED conneced at P2.0 (pin no. 21) will
blink with a delay of 1 second. The other LEDs connected at P2.1 to P2.7 will not change. The
delay calculation using Timer or without using Timer remain same as explained in Method 1 or
Method 2 of program 18.1. Here the entire program with delay subroutine using Timer 0 is given
below.

Assembly Language Program 18.2:

SL. Label Instructions of 8051

1 SETB P2.0

2 AGAIN: ACALL DELAY

3 CPL P2.0

4 SJMP AGAIN

5 DELAY: MOV TMOD, #01H

6 MOV R2, #20

7 REPIT: MOV TL0, #0FDH

8 MOV TH0, #4BH

9 SETB TR0

10 HERE: JNB TF0, HERE

11 CLR TR0

12 CLR TF0

13 DJNZ R2, REPIT

14 RET

__
Department of Electronics & Communication Engineering

8051 242

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Exercise

1) Write a program for 8051 microcontroller to blink an LED connected to P1.3 with a dalay time
of 1.5 second. Implement the delay subroutine using Timer 1 in Mode 1 and without using
Timer.

2) Write a program for 8051 microcontroller to implement a decade counter which will count with a
delay of 1 second. The counting of the decade counter should be displayed on four LEDs
connected to P2.0 – P2.3.

3) Write a program for 8051 microcontroller to implement a 4-bit counter which will count with a
delay of 2 seconds. The counting of the counter should be displayed on 2 digits 7 segment
displays.

4) Write a program for 8051 microcontroller to generate a square wave at P1.0 with an ON time of
3 ms and an OFF time of 10 ms using Timer 0 in Mode 1. Assume the frequency of the crystal to
be 11.0592 MHz.

5) Write a program for 8051 microcontroller to blink an LED connected to P1.3 with a dalay time
of 1.5 second. Implement the delay subroutine using Timer 1 in Mode 1 and using Timer.1
Overflow Interrupt (TF1).

__
Department of Electronics & Communication Engineering

8051 243

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

19. Programs on reading input switch state

19.1: Write a program for 8051 microcontroller to read the states of two input switches connected
at P1.0 and P1.1 and generates different blinking patterns of 8 LEDs connected to Port 2
according to the four input patterns.

Here two ON-OFF switches SW1 and SW2 are connected at P1.0 and P1.1 respectively. When the
switch is pressed ON, it gives 1 to the corresponding input pin of the 8051 microcontroller and
when it is OFF, it sends 0 to the port. Therefore SW1 and SW2 generates four input patterns at Port
1 and reading those patterns the 8051 microcontroller sends four different blinking patterns to Port2
as given in the following table.

SL SW2 SW1 Output
Pattern

Description of output pattern

1 0 0 PTRN0 0000 0000 → All LEDs will remain off.

2 0 1 PTRN1 0011 0011 → 1100 1100
 ↑ ↓
1100 1100 ← 0011 0011

3 1 0 PTRN2 0000 0000 → 0001 1000 → 0011 1100 →0111 1110
 ↑ ↓
 0001 1000← 0011 1100 ← 0111 1110 ←1111 1111

4 1 1 PTRN3 0000 1111 → 1111 0000
 ↑ ↓
1111 0000 ← 0000 1111

To provide these four input patterns using two switches, SW1 and SW2 we have used a input
module KSR-IP1 where eight ON-OFF DPDT switches are used along with a unidirectional buffer
IC 74LS244. Therefore this input module is capable to deliver 8-bit binary pattern to any port of the
8051 microcontroller. The input module along with its circuit diagram are shown in Fig-19.1 and
Fig-19.2 respectively.

Fig-19.1: KSR-IP1 Input Module

__
Department of Electronics & Communication Engineering

8051 244

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

Fig-19.2: Circuit diagram of KSR-IP1 Input Module

Among these eight switches (SW1 – SW8) two switches SW1 and SW2 are connected to P1.0 and
P1.1 of Port1 of 8051. The entire circuit diagram with input switches and eight LEDs connected to
Port2 is shown in Fig-12.3. Here the whole circuit is driven by the external +5V power supply after
burning the 8051 chip using USBASP programmer. For this reason all the jumpers (JP2, JP3, JP4)
except JP1 are made shorted.

Fig-19.3: Circuit diagram of KSR805152-MB1 board, input module KSR-IP1 connected to Port1
and eight LEDs connected to Port2

__
Department of Electronics & Communication Engineering

8051 245

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

To configure any port in 8051 as input port the port register is to be loaded with FFH. As Port1 here
is used as an input port, it has been initialized with FFH at the beginning of the program.

Assembly Language Program 19.1:

SL. Label Instructions of 8051

1 MOV TMOD,#01H

2 MOV P1,#0FFH

3 AGAIN: MOV P2,#00H

4 MOV A,P1

5 ANL A,#03H

6 CJNE A,#00,SKIP

7 SJMP AGAIN

8 SKIP: CJNE A,#01H,L1

9 ACALL PTRN1

10 L1: CJNE A,#02H,L2

11 ACALL PTRN2

12 L2: CJNE A,#03H,L3

13 ACALL PTRN3

14 L3: SJMP AGAIN

15 PTRN1: MOV P2,#33H

16 AG1: MOV A,P1

17 ANL A,#03H

18 CJNE A,#01H,RETN1

19 MOV R2,#20

20 REP1: MOV TL0,#08H

21 MOV TH0,#4CH

22 ACALL DELAY

23 DJNZ R2,REP1

24 XRL P2,#0FFH

25 SJMP AG1

26 RETN1: RET

__
Department of Electronics & Communication Engineering

8051 246

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

SL. Label Instructions of 8051

26 PTRN2: CLR 05H

27 MOV R6,#00H

28 AG2: MOV A,P1

29 ANL A,#03H

30 CJNE A,#02H,RETN2

31 MOV A,R6

32 MOV C,05H

33 CPL C

34 RLC A

35 MOV 05H,C

36 MOV R6,A

37 MOV R2,#30

38 REP2: MOV TL0,#08H

39 MOV TH0,#4CH

40 ACALL DELAY

41 DJNZ R2,REP2

42 SJMP AG2

43 RETN2: RET

44 PTRN3: MOV P2,#0FH

45 AG3: MOV A,P1

46 ANL A,#03H

47 CJNE A,#03H,RETN3

48 MOV R2,#30

49 REP3: MOV TL0,#08H

50 MOV TH0,#4CH

51 ACALL DELAY

52 DJNZ R2,REP3

53 XRL P2,#0FFH

54 SJMP AG3

__
Department of Electronics & Communication Engineering

8051 247

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

SL. Label Instructions of 8051

55 RETN3: RET

56 DELAY: SETB TR0

57 HERE: JNB TF0,HERE

58 CLR TR0

59 CLR TF0

60 RET

__
Department of Electronics & Communication Engineering

8051 248

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

20. Programs of 7 segment display interfacing

A 7-segment display is commonly used in electronic display devices for decimal numbers from 0 to
9 and in some cases, basic characters. The use of LEDs in seven-segment displays made it popular,
bright and clear, easy to interface and cost effective. There are 7 illuminating segments (named as a,
b, c, d, e, f, g) and a dot (named as DP) in a 7-segment display. Corresponding to each segment and
dot there is a LED inside the 7-segment display. A particular segment in a 7-segment display
becomes illuminated if the corresponding LED of that segment glows due to the forward biasing.
The pin-out of a 7-segment display is shown in Fig-20.1.

 Fig-20.1(a): Pin-out of Common Anode Fig-20.1(b): Pin-out of Common Cathode
 7-segment display 7-segment display

Basically there are two types of 7-segment display namely 1) Common Anode 7-segment display
and 2) Common Cathode 7-segment display.

1) Common Anode 7-segment display – In this construction all the anodes of eight LEDs are
connected together to form a common terminal CA as shown in Fig-20.1(a). Other eight cathode
terminals are connected to eight pins namely a, b, c, d, e, f, g and DP. The internal schematic
diagram of a common anode 7-segment display is shown in Fig-20.2.

Fig-20.2: Internal schematic diagram of common anode 7-segment display

__
Department of Electronics & Communication Engineering

8051 249

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

2) Common Cathode 7-segment display – In this construction all the cathodes of eight LEDs are
shorted together to form a common terminal CC as shown in Fig-20.1(b). Other eight anode
terminals are connected to eight pins namely a, b, c, d, e, f, g and DP. The internal schematic
diagram of a common cathode 7-segment display is shown in Fig-20.3.

Fig-20.3: Internal schematic diagram of common cathode 7-segment display

Among these two configurations common anode 7 segment display has been used to design the 7
segment display driver board where three 7 segment displays have been used to show any three
digit decimal number in the range of 0 to 999. We know that the current rating of any port except
Port 0 is around 15 mA in total which is not sufficient to drive the 7 segment display. That’s why a
driver IC ULN2803 is used to deliver the required current to the 7 segment display to glow it
prominently. ULN2803 comprises eight open collector darlington pair transistors inside it. Here
each LED of the common anode 7 segment display is connected to the collector of each darlington
pair via a current limiting resistance of 220 Ω. If the base of a darlington pair is made high, the
darlington pair makes the collector shorted to ground. As a result a current will start to flow through
the LED of a particular segment making that segment to be illuminated. Thus any decimal digit in
the range of 0 to 9 can be shown on the 7 segment display. Now these three 7 segment displays are
driven by a common 8-bit bus with the help of multiplexing using three 74LS373 latches. At any
particular time only one latch will be enabled to store the bit pattern to display a digit on a 7
segment display. In this way all of the three 7 segment displays shows the digits one after another,
which forms a complete 3 digits number finally. The circuit diagram of the 3 digit 7 segment
display driver is shown in Fig-20.4.

__
Department of Electronics & Communication Engineering

8051 250

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Fig-20.4: Circuit diagram of 3 digit 7 segment display driver

Fig-20.5: Front view of 3 digit 7 segment display driver board

__
Department of Electronics & Communication Engineering

8051 251

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Now this 7 segment display driver can be used for various purposes to implement different
programs of 8051.

20.1: Write a program for 8051 microcontroller to implement a Mod-N counter with the help of 7
segment display, where the maximum value of N can be 256.

In this case a Mod-N counter is implemented using 8051 microcontroller and a 3 digit 7 segment
display driver where the value of N may be up to 256. We know that a Mod-N counter has N no. of
states starting from 0 to (N-1). Therefore the Mod-N counter starts counting from 0 and ends to (N-
1) and returns to 0 again to repeat the same counting sequence. Here register R5 is used to count
from 0 to (N-1). After every counting 3 digits (Digit1, Digit2 and Digit3) of counting value are
extracted from the counting value (packed BCD) stored in the register R5 and these digits
(unpacked BCD) are converted to its equivalent 7 segment codes using a lookup table. Finally these
7 segment codes are sent to the corresponding 7 segment displays one by one to glow the entire 3
digits for representing a counting value. The selection of these 7 segment displays is done using
Latch Enable (LE) pin of 74LS373 IC which are connected to P3.0, P3.1 and P3.2 of Port3.
Therefore it is clear that Port2 is connected to the common 8-bit data bus of the display driver and 3
pins of Port3 (P3.0, P3.1, P3.2) are connected to LE pins of three 74LS373 ICs. All the 7 segment
displays used here is common anode type which are driven by another three driver ICs namely
ULN2803. The circuit diagram of 3 digit 7 segment display driver board is shown in Fig.20.6 for
visualization.

Fig-20.4: Circuit diagram of 3 digit 7 segment display driver

__
Department of Electronics & Communication Engineering

8051 252

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Now 7 segments (a, b, c, d, e, f, g) and DP of every 7 segment display are controlled by the pins of
Port2 as follows.

P2.0 → a P2.1 → b P2.2 → c P2.3 → d

P2.4 → e P2.5 → f P2.6 → g P2.7 → DP

Depending upon the above configuration the following table gives the 7 segment codes
corresponding each digits and these 7 segment codes are stored in a lookup table starting from the
memory address 200 in the code memory of 8051.

P2.7 P2.6 P2.5 P2.4 P2.3 P2.2 P2.1 P2.0
Code in

Hex

Memory Addresses
to store the 7

segment codes

Displayed Single
Digit NumberDP g f e d c b a

0 0 1 1 1 1 1 1 3F 200 0

0 0 0 0 0 1 1 0 06 201 1

0 1 0 1 1 0 1 1 5B 202 2

0 1 0 0 1 1 1 1 4F 203 3

0 1 1 0 0 1 1 0 66 204 4

0 1 1 0 1 1 0 1 6D 205 5

0 1 1 1 1 1 0 1 7D 206 6

0 0 0 0 0 1 1 1 07 207 7

0 1 1 1 1 1 1 1 7F 208 8

0 1 1 0 1 1 1 1 6F 209 9

If 254 is to be displayed on the 7 segment display driver, the 7 segment code of 4 (LSD) i.e. 66H
will be sent to the data bus via Port2 first, then P3.0 is made high keeping P3.1 and P3.2 low to
select Digit1 so that the 7 segment code 66H reaches only to Digit1 to glow 4 on it. Other two digits
5 and 2 (MSD) are also shown on Digit2 and Digit3 respectively maintaining the above mentioned
sequences and enabling P3.1 and P3.2 respectively. Thus the entire counting value 254 will be
shown on 3 7 segment displays finally. In this program a delay of 1 sec approximately is
maintained between two consecutive counting values. The assembly language program for Mod-N
counter is given below.

__
Department of Electronics & Communication Engineering

8051 253

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Assembly Language Program 20.1:

SL. Label Instructions of 8051

1 ORG 0000H

2 N EQU 256

3 T EQU 10

4 MOV P3, #00H

5 MOV DPTR, #200

6 START: MOV R1, #N

7 MOV R5, #00H

8 BACK: ACALL CONVT

9 ACALL DELAY

10 INC R5

11 DJNZ R1, BACK

12 SJMP START

13

14 CONVT: MOV B, #100

15 MOV A, R5

16 DIV AB

17 MOVC A, @A+DPTR

18 MOV P2, A

19 NOP

20 NOP

21 NOP

22 NOP

23 SETB P3.1

24 NOP

25 NOP

26 NOP

27 NOP

28 CLR P3.1

__
Department of Electronics & Communication Engineering

8051 254

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

SL. Label Instructions of 8051

29 MOV A, B

30 MOV B, #10

31 DIV AB

32 MOVC A, @A+DPTR

33 MOV P2, A

34 NOP

35 NOP

36 NOP

37 NOP

38 SETB P3.2

39 NOP

40 NOP

41 NOP

42 NOP

43 CLR P3.2

44 MOV A, B

45 MOVC A, @A+DPTR

46 MOV P2, A

47 NOP

48 NOP

49 NOP

50 NOP

51 SETB P3.0

52 NOP

53 NOP

54 NOP

55 NOP

56 CLR P3.0

57 RET

__
Department of Electronics & Communication Engineering

8051 255

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

SL. Label Instructions of 8051

58 DELAY: MOV R2, #T

59 L2: MOV R3, #255

60 L3: MOV R4, #255

61 L4: DJNZ R4, L4

62 DJNZ R3, L3

63 DJNZ R2, L2

64 RET

65

66 ORG 200 //Lookup table starts from 200 memory address

67 DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H, 7FH, 6FH

68 END

__
Department of Electronics & Communication Engineering

8051 256

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

APPENDIX – A

INDEX SHEET

__

Department of Electronics & Communication Engineering

LABORATORY NAME: ………………………………………………………………………..……...

NAME: …………………………………………. COLLEGE ROLL NO. ……………………

Index Sheet
SL Title of the Experiment Exp.

No.
Date of
Experiment

Date of
Submission

Page
No.

Grade Teacher’s
Signature

 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS
 E
 G
 F
 P
 NS

** E: Excellent G: Good F: Fair P: Poor NS: Not Submitted

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

APPENDIX – B

CODING SHEET

__

Department of Electronics & Communication Engineering

EC493: Microprocessor & Microcontroller Laboratory Exp. No. Page No.

Title: Date:

Program Description:

Assembly Language Program Machine Language Program

Comments
Label Mnemonics Memory Address

Hex Code

Opcode Operand

Student Roll No: Teacher Signature:

College of Engineering and Management, Kolaghat.

 EC493: Microprocessor and Microcontroller Laboratory

APPENDIX – C

SAMPLE LAB ASSESSMENT SHEET

__

Department of Electronics & Communication Engineering

SL. Roll No. Name UNIV Roll No.
Week- Week- Week- Week- Week-

EN FA *PRFM EN FA *PRFM EN FA *PRFM EN FA *PRFM EN FA *PRFM

1 ECE/24/001 DURBADAL ROUTH 10700324010

2 ECE/24/002 ANIKET PANDA 10700324009

3 ECE/24/003 SHUBHANKAR BOS 10700324008

4 ECE/24/004 RATUL ROY 10700324007

5 ECE/24/005 DEVDIPTA MONDA 10700324006 4

6 ECE/24/006 SRIJIT DAS 10700324005

7 ECE/24/007 RIYA HEMBRAM 10700324004

8 ECE/24/008 SUSMITA SENA 10700324003

9 ECE/24/009 SOUMEN MANNA 10700324014

10 ECE/24/010 SWARNAVA DAS 10700324001

11 ECE/24/011 SAYAN SAMANTA 10700324002

12 ECE/24/012 ANKAN MAITI 10700324013

13 ECE/24/013 ARUP MAITY 10700324012

14 ECE/24/015 NIBEDITA DAS 10700324011

Name of the Teacher

Signature with date

Exp. No. Experiment Details Performed in

 Electronics and Communication Engineering Department
 Continuous Lab assessment for 4ECE

 Microprocessor and Microcontroller Lab [EC 493]

EN: Experiment No.
FA: File Assessment
*PRFM: Performance-
E = Excellent (10), G = Good (8),
F = Fair (6), P = Poor (4),
AB = Absent (4), NS = Not Submitted (2)

