LABORATORY
MANUAL

College of Engineering and Management, Kolaghat.

= 'EC493: Microprocessor and Microcontroller Laboratory

Vision
Pursuing Excellence in Teaching-Learning Process to Produce

High-Quality Electronics and Communication Engineering

Professionals.

Mission
To enhance the employability of our students by strengthening
their creativity with different innovative ideas by imparting high-
quality technical and professional education with continuous

performance improvement monitoring systems.

To carry out research through constant interaction with research

organizations and industry.

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

“EC493: Microprocessor and Microcontroller Laboratory

Program Outcomes (POs)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering
fundamentals, and an engineering specialization to the solution of complex engineering
problems.

Problem analysis: Identify, formulate, review research literature, and analyze complex
engineering problems reaching substantiated conclusions using the first principles of
mathematics, natural sciences, and engineering sciences

Design/development of solutions: Design solutions for complex engineering problems and
design system components or processes that meet the specified needs with appropriate
consideration for public health and safety, and cultural, societal, and environmental
considerations.

Conduct investigations of complex problems: Use research-based knowledge and research
methods including design of experiments, analysis and interpretation of data, and synthesis of
the information to provide valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern
engineering and IT tools including prediction and modeling to complex engineering activities
with an understanding of the limitations.

The engineer and society: Apply reason informed by the contextual knowledge to assess
societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to
the professional engineering practice.

Environment and sustainability: Understand the impact of professional engineering
solutions in societal and environmental contexts, and demonstrate the knowledge of, and need
for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and
norms of the engineering practice

Individual and team work: Function effectively as an individual, and as a member or leader
in diverse teams, and in multidisciplinary settings.

10

Communication: Communicate effectively on complex engineering activities with the
engineering community and with society at large, such as being able to comprehend and write
effective reports and design documentation, make effective presentations, and give and
receive clear instructions.

11

Project management and finance: Demonstrate knowledge and understanding of the
engineering and management principles and apply these to one’s work, as a member and
leader in a team, to manage projects and in multidisciplinary environments.

12

Life-long learning: Recognize the need for, and have the preparation and ability to engage in
independent and life-long learning in the broadest context of technological change.

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

¥ EC493: Microprocessor and Microcontroller Laboratory

Program Specific Outcomes (PSOs)

An ability to design and conduct the experiments, analyse and interpret the data using
PSO-1 |modern software or hardware tools with proper understanding (basic conceptions) of
Electronics and Communication Engineering.

Ability to identify, formulate & solve problems and apply the knowledge of electronics

PSO-2 and communication to develop techno-commercial applications

Course Outcomes (COs)

The students will be able to acquire the knowledge of internal architecture of 8085
CO-1 |microprocessor and the skills in Assembly Language Programming of 8085
MiCroprocessor.

The students will acquire the knowledge of internal architecture of 8051 microcontroller
CO-2 |and also develop their skills in Assembly Language Programming of 8051
microcontroller.

The student will be able to gather knowledge of interfacing 8085 microprocessor and
CO-3 | 8051 microcontroller with various hardware devices along with the software interaction
and integration.

The students will be able to apply the concepts in the design of microprocessor/

Cco-4 microcontroller based systems in real time applications.
CO - PO Mapping
PO-1|PO-2|PO-3|PO-4|PO-5|PO-6 | PO-7|PO-8 | PO-9|PO-10|PO-11 | PO-12
CO-1| 3 3 3 3 3 0 0 0 0 2 2 2
CO-2| 3 2 3 3 2 0 0 0 0 2 2 2
CO-3| 3 3 3 3 3 1 0 0 3 2 3 3
CO-4 3 3 3 3 3 1 0 0 3 2 3 3
CO - PSO Mapping
PSO-1 PSO-2
CO-1 3 3
CO-2 3 3
CO-3 3 3
CO-4 3 3

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

A ECa93: Microprocessor and Microcontroller Laboratory

LIST OF CONTENTS

Contents of 8085 Microprocessor

Familiarization with 8085 simulator 1-7
» 1.1 Installation of Jubin’s 8085 simulator 2
» 1.2 How to use Jubin’s 8085 simulator 2

» 1.3 Procedure to write programs in Jubin’s 8085 simulator 4
» 1.4 Procedure to save/ load program in Jubin’s 8085 simulator 6
» 1.5 Procedure to execute a program in Jubins 8085 simulator 6
Familiarization with 8085 Trainer Kit 8-10
» 2.1 Functions of different keys of 8085 Trainer Kit

» 2.2 Procedure to load program code in 8085 Trainer Kit 9

» 2.3 Procedure to execute program in 8085 Trainer Kit 10
» 2.4 Procedure to show the result in 8085 Trainer Kit 10
Programs on Arithmetic and Logical Operations 11-50
» 3.1 Addition of two 8-bit numbers 11
» 3.2 Addition of ten 8-bit numbers 14
» 3.3 Addition of two 16-bit numbers 19
» 3.4 Addition of two 64-bit numbers 23
» 3.5 Subtraction of two 8-bit numbers 27
» 3.6 Subtraction of two 16-bit numbers 29
» 3.7 Multiplication of two 8-bit numbers using successive addition 32
> 3.7 Multiplication of two 8-bit numbers using shift and add method 35
» 3.8 Multiplication of two 16-bit numbers using shift and add method 38
» 3.9 Division of two 8-bit numbers using successive subtraction 43
» 3.10 Division of two 16-bit numbers using successive subtraction 45
Programs on Data Transfer and Data Separation 51-62
» 4.1 Transfer a block of data in forward direction without overlapping 51
» 4.2 Transfer a block of data in forward direction with overlapping 54
» 4.3 Separation of positive and negative numbers 58

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

A ECa93: Microprocessor and Microcontroller Laboratory

Contents of 8085 Microprocessor

5. |Programs on Searching and Sorting 63 -78
» 5.1 Find the largest number from a set of numbers 63
» 5.2 Find the largest and smallest number from a set of numbers 66
» 5.3 Arrange a set of numbers in ascending order using bubble sort 69
» 5.4 Merge two sorted list of numbers into a third sorted list 73
6. |Programs on Data Conversion 79 - 96
» 6.1 Convert a 2-digit packed BCD to two unpacked BCDs 79
» 6.2 Convert two unpacked BCD numbers into a 2-digit packed BCD 81
» 6.3 Convert a 2-digit packed BCD number to hexadecimal number 82
» 6.4 Convert a hexadecimal number to unpacked BCD numbers 85
» 6.5 BCD addition between two BCD numbers 88
» 6.6 Convert hexadecimal number to ASCII numbers 89
» 6.7 Convert hexadecimal number to gray code 91
» 6.8 Convert gray code to hexadecimal number 93
7. |Programs on Look up Table 97 -99
» 7.1 Determine the square of a number using look up table 97
8. |Programs on String Manipulation 100 - 118
» 8.1 Reverse a string 101
» 8.2 Check whether a string is palindrome or not 103
» 8.3 Concatenate two strings 106
» 8.4 Check whether a string contains another sub-string or not 108
» 8.5 Insertion of a string into another string at a specific position 116
9. Details Qf 8255 peripheral in 8085 trainer' kit ‘ 119 -133
Interfacing programs of 8255 in 8085 trainer kit
> 9.1 Blink a set of LEDs with a time delay using 8255 PPI in 8085 | 127
Trainer Kit
» 9.2 Display a single digit BCD number on a 7-segment display using 130
8255 PPI in 8085 Trainer Kit

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

A ECa93: Microprocessor and Microcontroller Laboratory

Contents of 8051 Microcontroller

10. |Familiarization with 8051 Simulator 134 - 143

» 10.1 Installation of Keil UVision 135

» 10.2 How to use Keil UVision 136

» 10.3 Procedure to write 8051 assembly language program in Keil 136

» 10.4 Procedure to build/ rebuild 8051 project in Keil UVision 139

» 10.5 Procedure to execute 8051 program using Keil UVision 140

» 10.6 Procedure to store data inside RAM using Keil UVision 141
11. |Procedure to burn 8051 microcontroller 144 - 150

» 11.1 Hardware description of USBASP programmer 144

» 11.2 Software description of ProgISP 147

» 11.3 Procedure to burn hex code using ProgISP 148
12. |Programs on Arithmetic and Logical Operations 151 -169

» 12.1 Addition of two 8-bit numbers 151

» 12.2 Addition of ten 8-bit numbers 153

» 12.3 Addition of two 64-bit numbers 155

» 12.4 Subtraction of two 64-bit numbers 159

» 12.5 Algebraic sum of two 8-bit numbers 163

» 12.6 Multiplication of two 8-bit numbers 167

» 12.7 Division of two 8-bit numbers 168
13. |Programs on Data Transfer and Data Separation 170 - 179

» 13.1 Transfer a block of data in forward direction without overlapping 170

» 13.2 Transfer a block of data in forward direction with overlapping 171

» 13.3 Transfer a block of data in reverse direction without overlapping| 173

» 13.4 Separation of positive and negative numbers 174

» 13.5 Separation of odd and even numbers 177
14. |Programs on Searching and Sorting 180 - 190

» 14.1 Find the largest and smallest number from a set of numbers 180

» 14.2 Find the number of ‘DD’ from a list of numbers 182

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

A ECa93: Microprocessor and Microcontroller Laboratory

Contents of 8051 Microcontroller

» 14.3 Arrange a set of numbers in ascending order using bubble sort 184

» 14.4 Merge two sorted list of numbers into a third sorted list 185
15. |Programs on Data Conversion 191 - 212

» 15.1 Convert a 2-digit packed BCD to two unpacked BCD numbers 191

» 15.2 Convert two unpacked BCD numbers to a 2-digit packed BCD 193

» 15.3 Convert a 2-digit packed BCD number to hexadecimal number 194

» 15.4 Convert a hexadecimal number to unpacked BCD numbers 196

» 15.5 Convert hexadecimal number to ASCII numbers 199

» 15.6 Convert ASCII numbers to hexadecimal number 202

» 15.7 Convert hexadecimal number to gray code 204

» 15.8 Convert gray code to hexadecimal number 205

» 15.9 BCD addition between two 8-bit BCD numbers 209

» 15.10 BCD addition between two 32-bit BCD numbers 210
16. |Programs on Look up Table 213 -215

» 16.1 Determine the square of a number using look up table 213
17. |Programs on String Manipulation 213 -230

» 17.1 Reverse a string 213

» 17.2 Check whether a string is palindrome or not 218

» 17.3 Check whether a string contains another sub-string or not 220

» 17.4 Insertion of a string into another string at a specific position 228
18. |Programs of Interfacing with LEDs 231-243

» 18.1 Blink a set of 8 LEDs connected to port P2 of 8051 231

» 18.2 Blink an LED connected to P2.0 of port P2 of 8051 242
19. |Programs on reading input switch state 244 — 248

» 19.1 Reading input switches connected at port P1 of 8051 and| 244

generate different blinking patterns at port P2 accordingly

20. |Programs of 7 segment display interfacing 249 - 256

» 20.1 Implementing a Mod-N counter with the help of 7 segment| 249

display, where the maximum value of N can be 256.

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.

A ECa93: Microprocessor and Microcontroller Laboratory

Appendix
A. |Index Sheet Al
B. |[Coding Sheet B1
C. |Sample Lab Assessment Sheet C1

Department of Electronics & Communication Engineering

\ eV

College of Engineering and Management, Kolaghat.

=« EC493: Microprocessor and Microcontroller Laboratory

D)
2)

3)

4)

S)

6)

7)

8)

SYLLABUS
Familiarization with 8085 & 805 1simulator on PC.
Study of prewritten programs using basic instruction set (data transfer, Load/ Store,
Arithmetic, Logical) on the KIT. Assignment based on above.
Programming using kit and simulator for:
1. Table look up
ii. Copying a block of memory
iii. Shifting a block of memory
iv. Packing and unpacking of BCD numbers
v. Addition of BCD numbers
vi. Binary to ASCII conversion
vii. String Matching, Multiplication using shift and add method and Booth’s
Algorithm.
Program using subroutine calls and IN/OUT instructions using 8255 PPI on the
trainer kit e.g. subroutine for delay, reading switch state and glowing LEDs
accordingly.
Study of timing diagram of an instruction on oscilloscope.
Interfacing of 8255: Keyboard and Multi-digit Display with multiplexing using
8255
Study of 8051 Micro controller kit and writing programs as mentioned in S/L3.
Write programs to interface of Keyboard, DAC and ADC using the kit.

Serial communication between two trainer kits.

@

Department of Electronics & Communication Engineering

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1. Familiarization with 8085 simulator
A simulator is an application that mimics the environment and the operation of a practical
system, providing the result without any test on that system. The advantages and disadvantages
of a simulator are given below.

Less Financial Risk: Simulation is less expensive than real life experimentation. The potential
costs of testing theories of real world systems can include expenditure of wastage of materials,
cost of replacement of non-functioning parts etc. Due to this reason simulation allows you to test
theories and avoid costly mistakes in real life.

Exact Repeated Testing: A simulation allows you to test different theories and innovations time
after time against the exact same circumstances. This means you can thoroughly test and
compare different ideas without deviation.

Examine Long-Term Impacts: A simulation can be created to let you see into the future by
accurately modeling the impact of years of use in just a few seconds. This lets you see both short
and long-term impacts so you can confidently make informed investment decisions which can
provide benefits in the future.

Assess Random Events: A simulation can also be used to assess random events such as an
unexpected events.

Test Non-Standard Distributions: A simulation can take account of changing and non-standard
distributions, rather than having to repeat only set parameters. By taking such changing
parameters into account, a simulation can more accurately mimic the real world.

Security and safety: Simulation also provides security and safety to a novice user in a complex
system.

Limitations: Most of the time simulation can not provide accurate result of a large and
complicated system. After testing on simulator when it is experimented on the actual physical
system, there are some deviation or error compared to the real time results of the system. Due to
this reason, simulations have limitations when it is realized in real-world situations.

8085 simulator is used to simulate mainly the assembly language programs on a PC and also
makes it easy to test the same program already executed in simulator on the 8085 Kit. In this
laboratory Jubin’s 8085 Simulator is used to test the programs of 8085 microprocessor. It is a
Java based application which comes with jar file extension. This software is compatible for all
operating systems like Windows, Linux and Mac. For any operating system Java Run-time
Environment (JRE) must be installed to run this simulator. After installing JRE into the system,
the application can be executed only by double-clicking on it. Therefore this simulator is not
required to be installed in the system.

Department of Electronics & Communication Engineering
8085 1

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1.1 Installation of Jubin’s 8085 simulator

Installation on Windows:

Stepl — Download Java greater than version 6.0 for Windows.
Step2 — Install Java in Windows.

Step3 — Copy the Jubin’s 8085 Simulator with .jar file extension.
Step4 — Double click on .jar file to open and run the simulator.
Installation on Ubuntu:

Stepl — Install Java using the following commands:

$ sudo apt install default-jre
$ sudo apt install default-jdk

Step2 — Copy the Jubin’s 8085 Simulator with .jar file extension into a directory.
Step3 — Double click on .jar file to open and run the simulator.

1.2 How to Use: The screenshots of Jubin’s 8085 Simulator are shown in Fig-1.1, Fig-1.2 and
Fig-1.3 respectively.

8085 Simulator

File Edit Tools Settings Simulation Subroutine View Load Sample Program Help

 Editor | Assembler [Registers | Memory | Devices

[*] 2085 Assembly Language Editor [] Registars : 17

| Assembler | Dis bler | Register value | 8|54 3|2 [0
i i Accumulator I oo pD/ojojo e |0 |0 0
Register B oo D 0o|0j0 |00 (DD
Register © o0 0O 00| |0 |0 |00
4 . " Register D oo 0|00 |0c|0o (0|0 |0
Registers Window Smwt e olololcfelelels
4 fncgistern e 0 oj0laolel0]o
Register L oo 0 D0 |00 (0 |00
MemoryiM) oo 0/ ojo|jojo (e |00
Resister Value S 2| slac kgl wicy
Flag Resis | o0 |olojo|o]olo]o o
Typa Walua
Stack Pointer(SP) 0000
Memory Pointer [(HL} 0000
Program Status Word(PSW] o000
Program Counter{PC) 0000
Clock Cycle Counter [
Instruction Counter o
For SIM instruction sop|spE| * |R7.slMsE ML ML M
/\ o/ of of o o] o] of o
I 1
For RIM instruction [spp[17.516.5]15.5] IE [M..[M. [M..]
Autocorrect | o] el 8] o] o] @] o] o]
No. Converter Tool :
Editor Window Hexadecimal | Decimal Binary
0 | 0 0

Created by ! Jubin Mitra

Fig-1.1: Editor and Registers Windows of Jubin’ 8085 Simulator

Department of Electronics & Communication Engineering
8085 2

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

8085 simulator — o @

File Edit Toels Settings Simulation Subroutine View Load Sample Program Help

"Registers | Memory | Devices |

|Ia Memory Editor |

oooo - FFFF

IMEmnry Range:

Mamory Addrass Valua

Editor | Assembler
[8085 Assembly Language Editor
blar | bi bler |
Memory Window
Autocorrect Assemble

! Show entire memory content
® Show only loaded memory |ocation

) Store directly to specified memory location

Created by : Jubin Mitra

Fig-1.2: Memory Window of Jubin’ 8085 Simulator

8085 Simulator

" Editor | Assembler |

File Edit Tools Settings Simulation Subroutine View Load Sample Program Help

| Registers | Memory | Devices |

Created by : Jubin Mitra

Fig-1.3: I/O Window of Jubin’ 8085 Simulator

— —
] 8085 Assembly Language Editor [interfacing device
A | Disas bie
a|s|s][7]8][s|ale]ec|D[E[F
! 00 |00 0o 00 |00 |00 oo (oo [oo oo oo |00
10 |60 06 00 00 (06 (00 00 |00 |00 (00 |00 00 00 (00 00 |00
20 |00 |60 o0 (o0 (00 (00 00 (00 [00 [00 (00 (00 (00 (00 00 (00
30 |00 [o0 o0 (00 (00 (00 @0 00 (00 |00 (00 (00 (00 (00 00 (00
UO W d ™\ 30 (0000 00 |00 |00 |00 (00 00 |00 [00 00 (00 [00 00 00 |00
Inaow ¥ 50 (00 |00 00 00 (0000 00 0000 (00|00 |00 (00 00 0000
“B 6o (oo (oo 00 (00 [00 |00 (00 00 [00 [00 |00 (00|00 00 00 00
70 |00 [00 00 00 (00 (00 (00 00 00 [00 |00 (00 (00 (00 00 [00
80 |00 (00 00 00 (00 (00 00 00 |00 |00 |00 (00 (00 0000 [00
90 |00 (60 00 00 00 (00 (00 00 |00 [00 |00 (00 (00 00 00 [00
AD__ |00 00 (00 00 |06 [00 0D 00 |00 [00 [00 (00 [00 00 00 |00
BO__ |00 (00 00 |00 (00 (00 00 00 |00 |00 |00 (00 (06 00 00 [00
CO__ |00 (60 00 00 (00 (00 (00 |00 |00 [00 |00 |00 00 (00 00 |00
DO |00 (G0 00 |00 (00 (00 (00|00 |00 |00 |00 00 (00 (00 00 (00
E0 |00 |00 oo oo (oo 0o oo oo [oo [oo [oo |oo [oo oo oo oo
FO_ (00 o0 00 0o (0o oo 00 00 oo |00 oo (oo joo oo oo oo
Autocorrect Assemble
_ -}

Department of Electronics & Communication Engineering

8085

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

In the white space of Editor window the assembly language program of 8085 microprocessor is
written. The status of various Registers is displayed in Registers Window at the right side of the
Editor Window. The contents of the memory locations with their addresses are shown in the
Memory Window and the status of I/O devices with their 8-bit addresses (IO mapped I0) is
reflected on the /O Window of the simulator.

1.3 Procedure to write a program:

» Every program in Jubin’s 8085 simulator should be started with the assembler directive “#ORG”
followed by the starting address of the program. In our laboratory it is better to start the program
from any address beyond 8000H, because in 8085 Kit does not support to load a program below
8000H as this portion of memory is reserved for BIOS programming in the 8085 Kit. For
example - #ORG 8000H will load the 8085 program starting from memory location 8000H.

#ORG Starting Address of Program

» The next line after “#ORG” should include “#BEGIN” followed by the same starting address
mentioned after “#ORG”. This directive compiles the program from the address mentioned after

“#BEGIN”. Normally we should compile the programming code from the starting address, since
the addresses after “#ORG” and “#BEGIN” should be same in case of this simulator.

#BEGIN Starting Address of Program

» Programming code should be placed after the #BEGIN and should be terminated by the
instruction HLT.

» Comment inside program: To give a comment inside the program, the comment line must be
preceded by ‘//’. The simulator excludes these comment lines during debug. Giving comment in
the program is a good practice to specify explanation of the program. This practice helps the
programmer to recapitulate the logic of a big complicated program in future.

» Storing Data inside Memory: To store the data inside the memory prior to the execution of the
program the following assembler directives should be used.

#ORG Address of the Memory from where
data can be stored consecutively
#DB Datal, Data?2, Data3, Data4,

DB (Data Byte) is a directive which stores all the 8-bit data (Datal, Data2, Data3,.....)
consecutively starting from the address specified by “#ORG”. This simulator can not store 16-bit
data at a time in the two successive memory addresses by using any assembler directive.

#ORG 8050
#DB 02H, FFH, CDH, 32H, DDH

Department of Electronics & Communication Engineering
8085 4

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

In the above example the simulator will load five 8-bit data (02H, FFH, CDH, 32H, DDH)
consecutively starting from memory location 8050H.

The above mentioned task can be done also directly using the Memory Window of the simulator
as shown in Fig-1.2.

Stepl - Open the Memory Window by clicking the Memory Tab.

Step2 - Select the option “Store directly to specified memory location”.

Step3 — Click on the cell under Memory Address and enter the 16-bit address to store data.

Step4 — Press the Tab button in the Keyboard which will select the cell under Value.

StepS — Enter 8-bit data and press Tab button once again. This will select the next memory
address.

Step6 — Repeat from Step3 to store multiple data in consecutive addresses.

» As the option “Show only loaded memory location” are selected by default, this simulator only
shows the content of the memory addresses which are used to store program code and data of
the program input and output. It does not show entire memory locations. To show this select the
option “Show entire memory content”.

» Storing Data in 1I/0 Address: The range of I/O addresses under the Tab “Devices” is 00H — FOH
for this software as shown in Fig-1.3. Hence any I/O location can be accessed either Input or
Output data. When a particular location is used as input, the 8-bit data should be placed into that
location by left-clicking on it and the data sent as output will be reflected on the particular output
location automatically.

» The content of any register can not be altered directly in this simulator. The change of the
contents of registered can be viewed only in this simulator.

» Syntax Error Checking: After completion of the program writing “Autocorrect” button below
the Editor Window should be clicked to align the program properly and to check any syntax error
in the program code.

» Assemble Program: Now click the “Assemble” button which shows a green window where
memory addresses of the program code, Label name, mnemonics, Hex codes (Opcodes and
Operands), Instruction length, no. of Machine cycles and no. of T-states are presented in a
tabular format. This view gives every detail of the program code.

Note: Jubin's 8085 Simulator is not case-sensitive i.e. the program code may be written either in
block letters or in small letters.

Department of Electronics & Communication Engineering
8085 5

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

1.4 Procedure to save/ load a program:

» After writing an assembly language program it should be saved by clicking the option “Save
Assembly Language Code” under File menu. During saving the file must be saved with a file
extension .asm.

» An existing program saved in an asm file can be loaded in the simulator using the option “Load
Assembly Language Code” under File menu.

1.5 Procedure to execute a program:

» Run Entire Program: Click the button “Run all at a time” at the bottom of the Assembler
window to execute the whole program at a time. After the execution of the program the desired
output can be checked in the Registers under Registers Window or in the memory locations
under the Memory Window or in the I/O locations under the Devices window as per the
program.

» Run Step by Step: 1f the button “Step By Step” is clicked, only one instruction with every click
will be executed. This mode of operation is called Single Line Execution. After execution of an
instruction the register or memory location or I/O location will be updated as per the operation of
that particular instruction. This option is very useful to detect any logical error inside the
program.

The screenshots of Jubin’s 8085 Simulator with a program written in Editor Window is shown in
Fig-1.4 followed by the same program displayed on Assembler Window in Fig-1.5.

B0B5 Simulator - fhome/debamrit/bt.asm

File Edit Tools Settings Simulation Subroutine View Load Sample Program Help

- For RIM instruction | cin[17.5/ 55/ s.5] € [0 [m.[m
Autocorredt Assemble | | o o] of of of o o o

Editar |'!\ss¢mblm | | Registers | Momory | Devices
[7] 8085 Assembly Language Editor i s i [7] Registers : s Gt o
Assembler | Disassembler | Registar valus Zle|slalalali|o
Accumulator oo ojojo ojo|ojojo
e —y et e ot te
. Realster C [0 Tefafelolalofale
ORG BOO0 Hegister D on ojojoojojoj0i0
BEGIN 3000 Regfster E [o0 [o[o[e[o|o[o|0]0
M H Register H oo o[(o/olojoojoo
o Register L oo Jofoleloo]oloe
e MemaniH) 0o olaoajolefole
LOOP: LDAKM B . - - - - =
STAK D Program Code [Resister Valie | 5] z| *lag] *| p] *lcyl
K B |F|iﬂleilmr oo [e|oleo|olofolo]
NM O
CRH
ﬂt;_ Type alue
HLT Stack Pointer(5P) 0000
ORG 050 Memary Painter (HL) [T
DB 01,02,03,04,05,06,07,08,08,10 Program Status WordiPSW) 0000
Program CaunterPC) 8000
Clock Cycle Counter []
Instruction Counter [
S0D SiC: INTR | TRAP | R7.5 | R&5 | A5.5
For SIMinstruction [soo/sps * [R7.5/MSE M. [M. M.
0l el o] Al a| &l o] @
I 1

Mo. Converter Tool

Hesxade cimal Decimal Binary
o]

Created by : Jubin Mitra

Fig-1.4: Editor window with program code

Department of Electronics & Communication Engineering
8085 6

College of Engineering and Management, Kolaghat.
CH 1: Familiarization with 8085 simulator

8085 Simulator - fhome/debamrit/bt.asm - o

Eile Edit Tools Settings Simulation Subroutine View Load Sample Program Help

"Editor | Assembler | | Registers | Memory | Devices |
Y : [7] Registers :
Mnemanics (Hexcods Bytes |M-CyclegT-Stateg Register value | 7| 6| s|al[3][2{1|0
MVIHO0A | 26 2 2 W - c 0o 0 |o|o|o oo |00
) DA = a0 0|0 0|0 00|00
DA E3050 [o1 3] 10 OO0 1 1 o 1
50 on o |o(ojo olo|o|o
30 oo 0|0 (00 |0 |00 |0
L =t] 10 oo o |o|ofoofo 0D
L4 [Eeqistey __o0 Jolofafefafo oo
30 Memory{M) oo o |vjojo o000
A X 2 i
iz | 1 z 7 Resistar [walue [s]z] *[acl %] p[«]cy]
L FlagResister | 00 [0 |0 |0 |0 000 0]
13 1 a3 B
25 X 1 A T
= : - TypE | Walus
ﬂ 3 - 2] |stack Pointer({5P) oo
:‘ y Pointer (HL} Dooo
’: 2 5 ‘Program Status Word(PSW) oooeo
L = : [Program CounterlPC) | aooon
| | | Clock Cycle Counter a
! i Instruction Ceunter]
a simulate SoD SID INTR TRAP R7.5 RE.5 R55
Start From — lagng
For SIM instruction [So0 SDE ¢ |27,3MSE M| M| M|
[ol o of o] 8] o] o] 0
Run all At a Time Step By Step
For RIM instruction [sip] 7.5 16.5] 15.5] € [M.[MM
[Zo o] 0| e a| o] 0] 0]
Mo, Converter Tool |
Hexadecimal Decimal Binary |
0] 0 o

Created by : Jubin Mitra

Fig-1.5: Assembler window

Department of Electronics & Communication Engineering
8085

College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

. Familiarization with 8085 Trainer Kit

ALS SDA 85 is a 8085 microprocessor Trainer Kit to dump the hex codes of 8085 program in
the memory, execute the dumped code and show the result on 7 segment display board connected
to this kit. The specification of this Kit is given below.

1) Operating frequency of the microprocessor 8085 inside this kit is 3.072 MHz.

2) Maximum size of memory 64 KB (32 KB EEPROM and 32 KB RAM). This kit is supplied
with 16 KB EEPROM and 8 KB RAM with battery backup.

3) I/O Parallel: 48 10 lines using two 8255.

4) 1O Serial: One RS232 compatible interface

5) Timer: Three 16 bit counter timer using 8253.

6) Keyboard: Consisting of 28 numbers of computer grade keys.

7) Display: Six numbers of seven segment displays.

8) BUS Signals: All Address, Data and Control signals are terminated in 50 pin berg stick.

9) Monitor Software: 16KB of powerful monitor software with keyboard and serial modes.

10) Interrupt Controller: § interrupts of 8259 interrupt controller IC are terminated in berg stick.

There are two models of 8085 Trainer Kit in the laboratory — 1) SDA85H and 2) SDASSM.
The top views of both the trainer kits are given in Fig-2.1.

Fig-2.1(a): View of SDA 85H Trainer Kit Fig-2.1(b): View of SDA85M Trainer Kit

Department of Electronics & Communication Engineering
8085 8

As% College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

2.1 Functions of different keys of 8085 Trainer Kit

Key Function

RESET It resets the system

SUBST MEM It is used to display the content of memory location and modify the
content of that memory location

EXAM REG It is used to display the content of particular register

NEXT It is used to show the content of a particular memory location for
SUBST MEM and the content of any register for EXAM REG.
It is also used to show the content of the next memory location or the
content of the next register of 8085.

PREV It is also used to show the content of the previous memory address or the
content of the previous register of 8085.

GO It is used to provide the starting address of the program for its execution.

EXEC It is used to run the entire program at a time after specifying the starting
address of the program using GO key.

SINGLE STEP It is used to execute the program in single step mode.

BLOCK MOVE It allows user to move a block of memory to another memory space.

VECT INTR It provides hardware interrupt (RST 7.5) via keyboard

INS It inserts the part of the program or data with relocation, by one or more
bytes

DEL It deletes the part of program or data, with relocation by one or more

bytes.

After the successful execution of a program in Jubin’s 8085 Simulator, the same program may be
tested on this Kit. For this purpose all the Hex codes are required to dump them into the memory of
the 8085 Kit. Jubin’s 8085 Simulator provides these Hex codes. The Hex codes are dumped into the
memory of the Kit and executed them using the following procedure.

2.2 Procedure to load program code:

» Press “RESET” key to reset the system. After resetting “Sda 85” text will appear on the display.

» Press the key “SUBST MEM” to load the program code.

» Enter the starting address of the program and press “NEXT” key.

Department of Electronics & Communication Engineering

8085 9

College of Engineering and Management, Kolaghat.
CH 2: Familiarization with 8085 Trainer Kit

» Now the content of the memory address specified will be displayed. Enter the correct Hex code
with the help of keyboard and press “NEXT” button. This will replace the previous 8-bit data by
the present 8-bit data. It is important to mention that until the “NEXT” key is press the new data
will not be saved into the specified memory location.

» After pressing “NEXT” it will show the content of the next memory location. Again replace it
with new data and press “NEXT”.

» This process will continue until the end of the program. At the end of the program enter the hex
code “EF” which is the opcode of RSTS software interrupt. This interrupt returns the program
control again to its monitor program.

» Sometimes if it is required to change the data of the previous memory location, press “PREV”
key in the kit.

» To check whether the program code is loaded or not, press “SUBST MEM” to give the starting
address of the program and continue to press “NEXT” button until the end of the program to
verify every hex code.

» If any input data are available for the program, insert the input data to desired memory location
following the above mentioned process.

2.3 Procedure to execute program:
» To run the program loaded into the memory, first press “RESET” to reset the system.
» Now press “GO” button and provide the starting address of the program.

» Lastly press “EXEC” key to run the program. After the successful execution of the program the
text “Sda 85 appears on the display of the Kit once again.

2.4 Procedure to show the result:

» After the successful execution of the program, if the result is stored in memory, press the
“SUBST MEM?” button, enter the memory address where the result is stored and press “NEXT”
to display the result.

» If the result is stored in any register, press “EXAM REG”, enter the name of the register by
pressing the designated alphabet from the keyboard and press “NEXT” to show the content of
that register which is nothing but a result of the program. For example — to get the content of
register A or accumulator press “A” key, for register B, press “B”, for register C, press “C” etc.

Department of Electronics & Communication Engineering
8085 10

fp "”é College of Engineering and Management, Kolaghat.
N4

=< CH 3: Programs on Arithmetic and Logical Operations

3. Programs on Arithmetic and Logical Operations

3.1: Write a program to add two 8-bit binary numbers which are stored at the memory locations
8050 and 8051 and also store the result of addition into DE register pair.

Method 1: In case of addition of two 8-bit binary numbers, the maximum result will be 1FE when
both of the numbers are maximum i.e. FF (FF + FF = 01FE). Hence it is clear that we need an extra
bit to store the result. That means a single 8-bit general purpose register (A, B, C, D, E, H, L) of
8085 microprocessor is not sufficient to store the result of two 8-bit binary numbers addition. It
needs atleast two 8-bit registers to store the result. That's why register pair DE has been used in the
above program to store the result. The flowchart of the above program is given below in Fig-3.1.

START Add the content of accumulator l.e.
| 1st number with the content of the
| address pointed by HL register pair
l.e. 2nd number

Initialize register D with 00H and it
is used to hold the higher byte of the
result of addition

v

Initialize HL register pair with the
address where the first §-bit number

Mo

{augend) is stared Yes
¥ Increment the content of
Copy the content of the address the register D by one
pointed by HL register pair i.e the

augend into register A

o
7

h 4

¥

Lower byte of the result is stored

increment the HL register pair by inside accumulator which is copied
one to point the next address where inside register E
the second 8-bit number (addend)
is stored

Fig-3.1: Flowchart of the program to add two 8-bit numbers and store the result in DE register pair

Department of Electronics & Communication Engineering
8085 11

2,

_ ‘*”% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.1 (Method 1):

SL.| Addresses | Label Mnemonics Hex Codes | No. of Bytes No. of T-States
1 8000 MVI D, 00 16 | 00 2 7
2 8002 LXI H, 8050 21 | 50 | 80 3 10
3 8005 MOV A, M 7E 1 7
4 8006 INX H 23 1 6
5 8007 ADD M 86 1 7
6 8008 JNC No carry | D2 | 0C | 80 3 10 (True) / 7 (False)
7 800B INR D 14 1 4
8 800C |No _carry MOV E, A S5F 1 4
9 800D HLT 76 1 5
TOTAL =14

Method 2: In this technique, the conditional jump instruction “JNC XXXX” is not used. Instead of
that, the instruction “ADC R” is used. If the content of Accumulator is made zero and the
instruction “ADC A” is used, the carry flag will be stored inside the Accumulator i.e. the higher
byte of the result of two 8-bit numbers addition will be stored inside the Accumulator. The

flowchart in this technique is shown in Fig-3.2.

START

Initialize HL register pair with the
address where the first 8-bit number
{augend) is stored

h

Copy the content of the address
pointed by HL register pair i.e the
augend into register A

h 4

Increment the HL register pair by
one to point the next address where
the second 8-bit number {addend)
is stored

}

Add the content of accumulator ie.
15t number with the content of the
address pointed by HL register pair
i.e. 2nd number

d

Lower byte of the result is stored
inside accumulator which is copied

inside register E

!

Load accumulator with
00H

!

Add the carry flag with the content of
the accumulator to store it inside the
accumulator so that the higher byte
of the result will be stored inside the

accumulator

!

Higher byte of the result stored
inside accumulator is copied to

register D

Fig-3.2: Flowchart of the program to add two 8-bit numbers and store the result in DE register pair

Department of Electronics & Communication Engineering
8085

12

Jwha% College of Engineering and Management, Kolaghat.
N4

=< CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.1 (Method 2):

SL. | Addresses Label | Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXIH, 8050 | 21 | 50 | 80 3 10
2 8003 MOV A, M 7E 1 7
3 8004 INXH 23 1 6
4 8005 ADD M 86 1 7
5 8006 MOVE, A 5F 1 4
6 8007 MVIA, 00 3E | 00 2 7
7 8009 ADC A 8F 1 4
8 800A MOV D, A 57 1 4
9 800B HLT 76 1 5
TOTAL =12
Result of Program3.1:
SETI »
Input Output
Mem. Address |Content |Remarks D — 00 — Higher Byte of Result
2050 oA Nol E — E7 — Lower Byte of Result
8051 DD No2
SET2 »
Input Output

D — 01 — Higher Byte of Result

Mem. Address |Content |Remarks E — FD — Lower Byte of Result

8050 FF Nol
8051 FE No2

Comparisons between Method 1 and Method2

» Now if we compare two methods described above to add two 8-bit numbers, we can observe
that the total size of the program in method 2 (12 Bytes) is less than the total size of the first
program (14 Bytes). That means in case of the second method, the program will occupy less
memory space compared to the first method.

Department of Electronics & Communication Engineering
8085 13

ST

{wis% College of Engineering and Management, Kolaghat.
NG

=< CH 3: Programs on Arithmetic and Logical Operations

Moreover, execution time in the second method is less than that of the first method. Therefore we
can conclude lastly that the second method is better than the first method.

3.2: Write a program to add ten 8-bit binary numbers which are stored at the memory locations
starting from 8050 to 8059 and also store the result of addition starting from 8054 onward.

It is to determine first, what will be the maximum value of the result of ten 8-bit numbers Addition
so that it can be determined that how many bytes is required to store the result. Naturally the result
of addition will be maximum, if all the ten 8-bit numbers having their maximum value i.e FF.

Hence FF + FF + FF + FF + FF + FF + FF + FF + FF + FF = 9F6 i.e 09F6

Therefore it is clear that atleast 2 bytes are required to store the result of ten 8-bit numbers addition.
We have to use two consecutive memory locations — one 805A and another 805B for storing the
lower byte and higher byte of the result respectively.

The concept of this program is that addition should be performed repeatedly for n times for addition
of n no. of 8-bit numbers and a register is to be taken for counting the no of carries occurred for
these multiple no. of addition. In this case register D has been taken to hold how many times the
carry occurred during 9 times addition of ten 8-bit numbers. Each time if a carry occurs the content
of register D is to be incremented by one. The ten 8-bit numbers are stored in consecutive memory
locations starting from 8050 to 8059 and the lower byte and the higher byte of the result will be
stored at address 805A and 805B respectively, which is shown pictorially in the following Fig-3.3.

Addresses Contents

8050 No 1

8051 No 2

8052 No3

8053 No 4

8054 No 5

8055 No 6

8056 No7

8057 No 8

8058 No 9

8059 No 10

805A Lower Byte of Result
805B Higher Byte of Result

Fig-3.3: Ten 8-bit numbers and the result of addition are stored consecutively from 8050

Department of Electronics & Communication Engineering
8085 14

oy,

i ‘*”% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 1: The flowchart of the above mentioned program is given below in Fig-3.4.

START

Initialize register D with 00H and it
is used to hold the higher byte of the
result of addition

!

Initialize register C with 09H for the
purpose of counter and it will be
decremented by one after each
addition

v

Initialize HL register pair with the
address where the first 8-bit number
{augend) is stored

!

Copy the content of the address
pointed by HL register pairi.e the
augend into register A

.

Increment the HL register pair by one to point the next
address where the second 8-bit number (addend) is stored

v

Add the content of accumulator i.e. 1st number with the
cantent of the address pointed by HL register pair i.e. 2nd

number

]

Yes

Increment the content of
the register D by one

decrement the content of
the register C by one

RegC=07?

MNo

b—

Mo

.

Increment the HL register pair by one fo
point the next address where lower byte of
the result will be stored

v

Lower byte of the result stored inside
accumulator is transfered to the memary
address pointed by HL register pair

v

Increment the HL register pair by one o
point the next address where higher byte of
the result will be stored

v

Higher byte of the result stored inside
accumulator is transfered to the memary
address pointed by HL register pair

END

Fig-3.4: Flowchart of the program to add ten 8-bit numbers stored consecutivel

Assembly Language Program 3.2 (Method 1):

SL. | Addresses Label Mnemonics | Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI D, 00 16 | 00 2 7
2 8002 MVIC, 09 OE | 09 2 7
3 8004 LXIH, 8050 | 21 | 50 | 80 3 10
4 8007 MOV A, M 7E 1 7
5 8008 Repeat |INXH 23 1 6
6 8009 ADDM 86 1 7
7 800A JNC D2 | OE | 80 3 10 (True) / 7
No_carry (False)
8 800D INRD 14 1 4
9 800E No_carry | DCR C 0D 1 4
10 800F JNZ Repeat | C2 | 08 | 80 3 10 (true) / 7

Department of Electronics & Communication Engineering

8085

15

ﬁf:‘@ College of Engineering and Management, Kolaghat.
NG

“=« CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses Label Mnemonics | Hex Codes | No. of Bytes | No. of T-States
(False)
11 8012 INX H 23 1 6
12 8013 MOV M, A 77 1 7
13 8014 INXH 23 1 6
14 8015 MOV M, D 72 1 7
15 8016 HLT 76 1 5
TOTAL =23

In the above program, it is being seen that the counter register C is initialized to 09, beacuse in this
case ten 8-bit numbers are being added. This implies that in case of the addition of N no. of 8-bit
numbers, the counter register should be initialized to a value (N — 1), if the above procedure is
followed. But if we follow the following process, then we have to initialize the counter register with
a value which is equal to the no. of 8-bit numbers which are being added. This procedure is given
using the assembly language program below.

Assembly Language Program 3.2 (Method 1):

SL. |Addresses| Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI D, 00 16 | 00 2 7
2 8002 MVIC, 0A OE | 0A 2 7
3 8004 LXIH, 8050 | 21 | 50 | 80 3 10
4 8007 XRAA AF 1 4
5 8008 Repeat |ADD M 86 1 7
6 8009 JNC No carry | D2 | 0D | 80 3 10 (True) / 7 (False)
7 800C INR D 14 1 4
8 800D | No_carry | INX H 23 1 6
9 800E DCR C 0D 1 4
10 800F JNZ Repeat C2 | 08 | 80 3 10 (true) / 7 (False)
11 8012 MOV M, A 77 1 7
12 8013 INX H 23 1 6
13 8014 MOV M, D 72 1 7
14 8015 HLT 76 1 5
TOTAL =22

Department of Electronics & Communication Engineering
8085 16

“’:T:”*; College of Engineering and Management, Kolaghat.
NG

=< CH 3: Programs on Arithmetic and Logical Operations

So it is observed in the above program, the total execution time is 430 T-states which was only 401
T-states in the previous program. Hence this above program takes a very large time to complete in
comparison with that of the previous program. That's why this above program may be rejected in
comparison to the first program, although this current program takes less memory than the first
program.

Method 2: In this method, the same technique like method 1 is applied, only the exception is that
the instruction “JNC XXXX is not used and instead of that the instruction “ADC A” is used. From
the assembly language program in this method 2 it is clear that if we compare the first program in
method 1 and this program in method 2, the execution time is very much less in the first program in
method 1. That's why the first program is the best case to add ten 8-bit numbers.

Assembly Language Program 3.2 (Method 2):

SL. Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI D, 00 16 | 00 2 7
2 8002 MVIC, 09 OE | 09 2 7
3 8004 LXI H, 8050 21 | 50 | 80 3 10
4 8007 MOV B,M 46 1 7
5 8008 Repeat | INX H 23 1 6
6 8009 MOV A, M 7E 1 7
7 800A ADD B 80 1 4
8 800B MOV B, A 47 1 4
9 800C MVIA, 00 3E 2 7
10 800E ADCD 8A 1 4
11 800F MOV D, A 57 1 4
12 8010 DCR C 0D 1 4
13 8011 JNZ Repeat C2 3 10 (True) /7
(False)
14 8014 INX H 23 1 6
15 8015 MOV M, B 70 1 7
16 8016 INX H 23 1 6
17 8017 MOV M, D 72 1 7
18 8018 HLT 76 1 5
TOTAL =25

Department of Electronics & Communication Engineering
8085 17

.

AR College of Engineering and Management, Kolaghat.
=< CH 3: Programs on Arithmetic and Logical Operations

Result of Program3.2:

SETI »

Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
8050 05 Nol 805A 11 Lower Byte of Result
8051 0D No2 805B 02 Higher Byte of Result
8052 DD No3
8053 AA No4
8054 12 No5
8055 32 Nob6
8056 01 No7
8057 0A No8
8058 IF No9
8059 0A Nol0

;flﬁ > Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
3050 05 Nol 805A S5F Lower Byte of Result
8051 06 No2 805B 00 Higher Byte of Result
8052 07 No3
8053 08 No4
8054 09 No5
8055 0A Nob6
8056 0B No7
8057 0C No8
8058 0D No9
8059 OE Nol0

Department of Electronics & Communication Engineering

8085

18

ST

{wis% College of Engineering and Management, Kolaghat.
NG

=< CH 3: Programs on Arithmetic and Logical Operations

3.3: Write a program to add two 16-bit binary numbers which are stored at the memory locations
starting from 8050 to 8053 i.e. I number at 8050 and 8051 and 2" number at 8052 and 8053.
Store the result of the addition starting from memory location 8054 onward.

In this program, we are performing 16-bit addition. Therefore maximum size of the result of 16-bit
addition must be determined. Maximum value of the result for 16-bit addition will be 1FFFE, when
both of the 16-bit numbers are maximum in value i.e. FFFF. Hence we need atleast 3 bytes of
memory to store the result. In this case lower byte, higher byte and carry byte of the result will be
stored at addresses 8054, 8055 and 8056 respectively. The total memory mapping of the above
mentioned case is shown in Fig-3.5.

Addresses Contents
8050 Lower byte of No 1
8051 Higher byte of No 1
8052 Lower byte of No 2
8053 Higher byte of No 2
8054 Lower byte of result
8055 Higher byte of result
8056 Carry byte of result

Fig-3.5: Two 16-bit numbers and the addition of them are stored consecutively from 8050

Now the above program can be done in two methods — in the first method, it can be done by using
the instruction “DAD Reg Pair” and in the second method, it can be done using the instruction
“ADC M”. Although the first method is very simple and takes less memory and execution time, the
second method must be performed. Because, whenever we perform more than 16-bit addition like
64-bit addition, 128-bit addition, the second method becomes simpler than the first method.

Department of Electronics & Communication Engineering
8085 19

ST

=% College of Engineering and Management, Kolaghat.

Y.

CH 3: Programs on Arithmetic and Logical Operations

Method 1: The flowchart of this program in first method is shown in Fig-3.6 below.

START

Load HL register pair with the first
16-bit number which is stored at
8050 and 8051

b

Load accumulator with 00H and
perform addition with itself along
with carry flag to hold the carry part
of 16-bit result

s

Y

pair with the content of DE register
pair

Exchange the content of HL register

Store the content of L register (Lower Byte) at 5054
Store the content of H register (Higher Byte) at 8055
Store the content of accumulator (Carry Byte) at 8056

¥

Load HL register pair with the
second 16-bit number which is
stored at 8052 and 8053

}

numbers stored in DE and HL
register pair using DAD instruction

Perform 16-bit addition between two

END

Fig-3.6: Flowchart of two 16-bit numbers addition using DAD instruction

Assembly Language Program 3.3 (Method 1):

SL. Addresses | Label | Mnemonics | Hex Codes | No. of Bytes | No. of T-States
1 8000 XRAA AF 1 4
2 8001 LHLD 8050 | 2A | 50 | 80 3 16
3 8004 XCHG EB 1 4
4 8005 LHLD 8052 | 2A | 52 | 80 3 16
5 8008 DAD D 19 1 10
6 8009 ADCA 87 1 4
7 800A SHLD 8054 22 | 54| 80 3 16
8 800D STA 8056 32 |56 | 80 3 13
9 8010 HLT 76 1 5

TOTAL =17

Department of Electronics & Communication Engineering
8085

20

ge of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Method 2: In this method, for 16-bit addition the instruction “ADC M” is used in place of “DAD
Reg Pair”. If we separate a 16-bit number into two bytes, one byte becomes lower byte and other
becomes higher byte. So whenever addition is performed between two 16-bit numbers, first addition
occurs between two lower bytes of two 16-bit numbers and the next addition is done between two
higher bytes of the same two 16-bit numbers along with the carry (if occurs) propagated from the

lower byte. It will be clear, if we take an example. Suppose the two 16-bit numbers which are being
added, are B18C and FAF9, as shown below.

Higher Byte Lower Byte

LA |
CH5D14D130D12011 D0 DS DB D7 DB D5 D4 D3 D2 D1 DO

t 0110001400011t 0 0_>B18C
1
+ 1+ 1 1 1 1 0 10D t 11 1 1 1 0 0 1_ >»FAF9
i1 0 1 ¢ 1 194 0 D11 C 0 © 0 1 0O 1
| 11 | TAC85
Higher Byte of Lower Byte of
the result tha result

Carry from lowear byte
Carry from the MSB to highar byte

Fig-3.7: Addition between two 16-bit numbers where carry propagates from lower to higher byte

It is now obvious that whenever lower bytes of two 16-bit numbers are added, there is no chance of
occuring carry from the previous stage, but during the addition of higher bytes carry may occur.
Thet's why before adding lower bytes using ADC instruction, the carry flag must be made zero. The
flowchart of addition of two 16-bit numbers using ADC instruction is shown below in Fig-3.8.

Lo) :

Add the content of accumulator and the content of

the address pointed by HL register pair along with

Initialize BC register pair with the starting address of first number the carry from the previous stage l.e. the higher

Initialize HL register pair with the starting address of second number byte of the second number
Initialize DE register pair with the starting address of the result
'L h 4
Load accumulator with the content of the Store the content of accumulator i.e. the higher
address pointed by BC register pair i.e.the byte of the result into the higher address of the
lower byte of the first number result

I l

Add the content of accumulator and the content of

: : S Increment DE register pair to store the carry part of
the address pointed by HL register pair i.e. the :
lower byte of the second number the resultinto the next address
Store the content of accumulator i.e. the lower byte Load accumulator with 00H and add the content of

of the resultinto the starting address of the result accumulator with itself along with carry

Increment the BC. HL and DE register pairs by one]
ta point the next addresses Store the content of accumulator i.e. the carry part

ofthe result into the address pointed by DE pair

Load accumulator with the content of the
address pointed by BC register pairi.e. the END
higher byte of the first number

Fig-3.8: Flowchart of two 16-bit numbers addition using ADC instruction

Department of Electronics & Communication Engineering
8085 21

!
.

Y.

\a% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.3 (Method 2):

SL. Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI B, 8050 01| 50 | 80 3 10
2 8004 LXI H, 8052 21| 52 | 80 3 10
3 8007 LXI D, 8054 11| 54 | 80 3 10
4 800A LDAX B 0A 1 7
5 800B ADDM 86 1 7
6 800C STAX D 12 1 7
7 800D INX B 03 1 6
8 800E INX H 23 1 6
9 800F INX D 13 1 6
10 8010 LDAX B 0A 1 7
11 8011 ADCM 8E 1 7
12 8012 STAX D 12 1 7
13 8013 INX D 13 1 6
14 8014 MVIA, 00 3E| 00 2 7
15 8016 ADC A 8F 1 4
16 8017 STAX D 12 1 7
17 8018 HLT 76 1 5
TOTAL =24
Result of Program3.3:
SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
8050 FF Lower byte of No 1 | {8054 FB Lower Byte of Result
8051 FE Higher byte of No 1 | (8055 FC Higher Byte of Result
8052 FC Lower byte of No 2 | (8056 01 Carry Byte of Result
8053 FD Higher byte of No 2

Department of Electronics & Communication Engineering

8085

22

-:E""e College of Engineering and Management, Kolaghat.
N7

=< CH 3: Programs on Arithmetic and Logical Operations

SET2 »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

8050 10 Lower byte of No 1 | 8054 40 Lower Byte of Result
8051 20 Higher byte of No 1 | [8055 60 Higher Byte of Result
8052 30 Lower byte of No 2 | 8056 00 Carry Byte of Result
8053 40 Higher byte of No 2

3.4: Write a program to add two 64-bit binary numbers which are stored at the memory locations
starting from 8050 onwards and the memory locations starting from 8060 onwards. Store the
result of the addition starting from memory location 8070 onwards.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 8050 to 8057 and the second number starts
from 8060 to 8067. Moreover, it takes atleast 9 consecutive bytes to store the result of addition
starting from 8070 to 8078. The memory mapping for storing the two 64-bit numbers and their
result of addition, is shown in Fig-3.9.

1% Number 2" Number
Address Content Address Content
8050 Bytel 8060 Bytel
8051 Byte2 8061 Byte2
8052 Byte3 8062 Byte3
8053 Byte4 8063 Byte4
8054 Byte5 8064 Byte5
8055 Byte6 8065 Byte6
8056 Byte7 8066 Byte7
8057 Byte8 8067 Byte8

Department of Electronics & Communication Engineering
8085 23

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 3: Programs on Arithmetic and Logical Operations

Result of Addition
Address Content
8070 Bytel
8071 Byte2
8072 Byte3
8073 Byte4
8074 Byte5
8075 Byte6
8076 Byte7
8077 Byte8
8078 Byte9

Fig-3.9: Memory mapping of two 64-bit numbers and their result of addition

During the addition of two 8-byte numbers, addition of each bytes from two numbers are performed
starting from the lowesr byte to highest byte successively i.e. addition is done first in between
Bytel of the two numbers, then between Byte2 and so on. If carry occurs after the addition of two
Bytel of two numbers, that carry will be propagated into the addition of two Byte2 of the two
numbers. Similarly if there is carry during the addition of two Byte2, that carry will be propagated
into the third bytes of the two numbers. This will go on untill highest byte i.e. Byte8 addition done.
In this case, one thing is important to consider that there is no chance of occuring any carry from
the previous stage during the addition of lowest bytes i.e. Bytel. Hence before using ADC
instruction for adding Bytel of the two numbers, the carry flag must be reset. The flowchart of this
program is shown in Fig-3.10. In this program addition will be performed for 8 times. Therefore a
register should be taken as counter. But the problem here is the shortage of general purpose
registers, because all the registers except Accumulator have been used to point the starting
addresses of two numbers and the starting address of the destination memory block for storing the
result of addition such as — BC register pair to point the addresses of 1* number, HL register pair for
2" number and DE register pair for destination block of result. Therefore a memory location like
8080 will be reserved to store the counting value for each iteration.

Department of Electronics & Communication Engineering
8085 24

2,

_ ‘*”% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

START

successively by 8 times

The address 8080 considered tp be an
counter. is initialized with the value 08,
because addition must be dane

Initialize BC register pair with the starting address of first number
Initialize HL register pair with the starting address of second number
Initialize DE register pair with the starting address of the result

!

Make the carry flag to be zero

v

Increment the BC. HL and DE register pairs by one
to point the next addresses

!

Decrement the content of the address 8080 i.e. the
counter by one with the help of accumulator

!

byte of the first number

Load accumulator with the content of the
address pointed by BC register pair i.e. the

Y

!

Add the content of accumulator and the content of
the address pointed by HL register pair

!

Store the content of accumulator i.e. the byte of the
result into the address pointed by DE register pair

Counter i.e. Accumulator=0 7

Add the content of accumulator
with itself along with carry

l

Store the content of accumulator i.e. the carry part
of the resultinto the address pointed by DE
register pair

END

\\""-\—_

Fig-3.10: Flowchart of addition between two 64-bit numbers

Assembly Language Program 3.4:

SL. | Addresses Label | Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVIA, 08 3E | 08 2 7
2 8002 STA 8080 32 | 80 | 80 3 13
3 8005 LXIB, 8050 | 01 | 50 | 80 3 10
4 8008 LXIH, 8060 | 21 | 60 | 80 3 10
5 800B LXID, 8070 | 11 | 70 | 80 3 10
6 800E XRAA AF 1 4
7 800F Repeat |LDAX B 0A 1 7
8 8010 ADCM 8E 1 7
9 8011 STAX D 12 1 7
10 8012 INX B 03 1 6
11 8013 INX H 23 1 6

Department of Electronics & Communication Engineering

8085

25

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
12 8014 INXD 13 1 6
13 8015 LDA 8080 3A | 80 | 80 3 13
14 8018 DCR A 3D 1 4
15 8019 STA 8080 32 | 80 | 80 3 13
16 801C JNZ Repeat C2 | OF | 80 3 10 (True) /
7 (False)
17 801F ADCA 8F 1 4
18 8020 STAX D 12 1 7
19 8021 HLT 76 1 5
TOTAL =34

In the above program, before starting the loop, an instruction “XRA A” is used. The reason behind
it that for the addition of lowest bytes for first time, the carry flag must be reset. That's why the
instruction “XRA A” is used to make the carry flag to be reset or zero. We can also use two
instruction consecutively in place of the instruction “XRA A”. The instructions are - “STC” which
will set the carry flag and then “CMC” which will invert the carry flag. So if we use these two
instructions consecutively one after another, then the carry flag will be zero ultimately. But these
two instructions take two bytes of memory whereas the instruction “XRA A” will take only a single
byte of memory to do the same purpose. Therefore it is better to use the instruction “XRA A”.

Result of Program3.4:
SETI »
Input
Nol No2

Addr |Content |[Remarks| [Addr |Content |Remarks
8050 |88 Bytel 8060 (01 Bytel
8051 |99 Byte2 8061 |02 Byte2
8052 |AA Byte3 8062 |03 Byte3
8053 BB Byte4 8063 |04 Byte4
8054 |CC Byte5 8064 |05 Byte5
8055 (DD Byte6 8065 |06 Byte6
8056 |EE Byte7 8066 |07 Byte7
8057 |FF Byte8 8067 |08 Byte8

Output
Result
Addr |Content |Remarks
8070 |89 Bytel
8071 9B Byte2
8072 |AD Byte3
8073 |BF Byte4
8074 |Dl1 Byte5
8075 |E3 Byte6
8076 |F5 Byte7
8077 |07 Byte8
8078 |01 Byte9

Department of Electronics & Communication Engineering

8085

26

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 »
Input Output
Nol No2 Result
Addr |Content |Remarks| |Addr |Content |Remarks Addr |Content |Remarks
8050 |10 Bytel 8060 |08 Bytel 8070 |18 Bytel
8051 |20 Byte2 8061 |07 Byte2 8071 |27 Byte2
8052 |30 Byte3 8062 |06 Byte3 8072 |36 Byte3
8053 |40 Byte4 8063 |05 Byte4 8073 |45 Byte4
8054 |50 Byte5 8064 |04 Byte5 8074 |54 Byte5
8055 |60 Byte6 8065 |03 Byte6 8075 |63 Byte6
8056 |70 Byte7 8066 |02 Byte7 8076 |72 Byte7
8057 |80 Byte8 8067 |01 Byte8 8077 |81 Byte8
8078 |00 Byte9

3.5: Write a program to subtract two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the result of subtraction at the memory location 8052 in
signed-magnitude form. Consider the content of memory location 8051 is subtracted from the
content of memory location 8050.

In this case the result of subtraction will be saved in signed-magnitude format, where the MSB is
treated as the sign bit and the remaining bits represent the magnitude. If MSB is high, then the
number will be treated as negative number and if it is low, then the number will be treated as
positive number. Here the result of two 8-bit numbers subtraction also will be 8-bit long where
MSB is the sign bit and remaining seven bits represent the magnitude of the result.

Suppose the content of 8050 is x and content of 8051 is y. That means the subtraction of (x —y) is
being performed in this program. If x <y the result of the subtraction will be in 2's complement
form and the result has to be 2's complemented and the MSB is made high by performing OR
operation with 1000000 i.e. 80 in Hex to get the signed-magnitude form. We have represented the
result in signed-magnitude form, because it is easily understandable. If x >y, the result is already in
signed-magnitude form. That's why no action is taken in this case. The carry/ borrow flag is set for
x <y and it is reset for x >y. So the status of the carry/ borrow flag is checked in this program to
decide that whether the result of subtraction is positive or negative. Fig-3.11 shows the flowchart of
the program for subtracting two 8-bit numbers.

Limitation: In this method, if the result of subtraction lies between -127 to +127, then this program
works correctly, otherwise it gives erroneous result.

Department of Electronics & Communication Engineering
8085 27

2,

‘% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

START

Initialize HL register pair with the
address whers the first 8-bit number
{minuend) is stored

v

Copy the content of the address
pointed by HL register pair i.e the
minuend into register A

h 4

Increment the HL register pair by
one to point the next address where
the second &-bit number
(subtrahend) is stored

¥

Subtract the content of the address
pointed by HL register pair i.e. the

subtrahend from the content of the
accumulator i.e minuend

Barrow / Carry ?

Complement the content of
accumulator (result of subtraction)
and increment it by one to get the

2's complement of the result

h 4

The M3B is made high by
performing COR operation between
the content of accumulator and the

number 80H i.e. A=A (XOR) 80

il
&

h 4

Increment the HL register pair by
one and copy the content of
accumulator (result of the
subtraction) inside the next address

END

Fig-3.11: Flowchart of the program to subtract two 8-bit numbers

Assembly Language Program 3.5

SL. | Addresses| Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H, 8050 21 |50 |80 3 10
2 8003 MOV A, M 7E 1 7
3 8004 INXH 23 1 6
4 8005 SUBM 96 1 7
5 8006 JNC POSITIVE | D2 | 0D | 80 3 10(True)/7 (False)
6 8009 CMA 2F 1 4
7 800A INR A 3C 1 4

Department of Electronics & Communication Engineering

8085

28

-:E""e College of Engineering and Management, Kolaghat.
N7

=< CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
8 800B ORI 80 F6 | 80 2 7
9 800D | POSITIVE [INX H 23 1 6
10 800E MOV M,A 77 1 7
11 800F HLT 76 1 5
TOTAL =16
Result of Program3.5:
SETI »
Input Output
Mem. Address |Content | Remarks Mem. Address |Content |Remarks
8050 AA (170) |{Nol (Minuend) 8052 64 (100) |Positive Result
8051 46 (70) |No2 (Subtrahend)
SET2 » Quitput
Input

Mem. Address |Content Remarks
8052 E4 (-100) |Negative Result

Mem. Address |Content | Remarks
8050 46 (70) |Nol (Minuend)
8051 AA (170) |No2 (Subtrahend)

3.6: Write a program to subtract two 16-bit binary numbers which are stored from the memory
location 8050 onwards and 8052 onwards and also store the result of subtraction starting from
the memory location 8054 onwards in signed-magnitude form. Consider the contents of memory
locations 8052 and 8053 are subtracted from the contents of memory locations 8050 and 8051.

In case of subtraction of two 16-bit numbers, four consecutive memory locations are required to
store the 16-bit minuend and 16-bit subtrahend. Therefore in this program the memory addresses
8050 and 8051 are used to store the minuend, where 8050 holds the lower byte and 8051 holds the
higher byte of the minuend. Similarly the memory locations 8052 and 8053 hold the lower byte and
the higher byte of the subtrahend. The result of the subtraction will be obviously 16-bit long and it
takes two consecutive memory locations 8054 and 8055, where 8054 will store the lower byte of the
result and 8055 will store the higher byte of the result. Now the lower byte of the subtrahend will be
subtracted first from the lower byte of the minuend, then the higher byte of the subtrahend will be
subtracted from the higher byte of the minuend taking account of the borrow of the lower byte

Department of Electronics & Communication Engineering
8085 29

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

subtraction. If carry flag is set after the higher byte subtraction, it imples that the minuend is less
than the subtrahend and we have to make MSB of the result to be high after taking 2's complement
of the entire 16-bit result to get signed-magnitude form. If carry does not occur, we do not need to
take any action. The flowchart of this program is shown in Fig-3.12.

Limitation: In this method, if the result of subtraction lies between -32767 to +32767, then this
program works correctly, otherwise it gives erroneous resullt.

START

Copy the contents of 8050 and
8051 (minuend) into DE register
pair

.

Copy the contents of 8052 and
8053 (subtrahend) into HL register
pair.

.

Lower byte of the minuend (content
of register E) and the lower byte of
the subtrahend (content of register : i B
L) are E.ubtrav(:tedE and the Iuwgr byte Yackat el iiaher by in
of the result which is stored inside
accumulator, is transfered to
register L temporarily.

'# Y

Borrow / Carry after higher byte
subtraction?

accumulator and lower byte in
register L) is 2's complemented and
stored info HL register pair

Higher byte of the minuend (content The MSB of the result is made high
of register D) and the higher byte of by performing OR operatian

the subfrahend (content of register between the content of accumulator

H) along with the barrow of the and the number 80H to indicate the
lower byte subtraction, are resultto be negative i.e. A=A
subtracted and the higher byte of {XOR) 80
the result will be stored inside the =
accumulator

i
Store the result of the subtraction
into two consecutive memaory
locations 8054 and 8055, where
6054 will hold the lower byte and
8055 will hold the higher byte

Fig-3.12: Flowchart of the subtraction between two 16-bit binary numbers

Department of Electronics & Communication Engineering
8085 30

ﬁf:”% College of Engineering and Management, Kolaghat.
LN

“w= CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.6:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States

1 8000 LHLD 8050 2A | 50| 80 3 16

2 8003 XCHG EB 1 4

3 8004 LHLD 8052 2A | 52| 80 3 16

4 8007 MOV AE 7B 1 4

5 8008 SUB L 95 1 4

6 8009 MOV LA 6F 1 4

7 800A MOV A,D TA 1 4

8 800B SBB H 9C 1 4

9 800C JNC POSITIVE | D2 | 1B | 80 3 10 (True) /7

(False)

10 800F CMA 2F 1 4

11 8010 MOV H,A 67 1 4

12 8011 MOV A,L 7D 1 4

13 8012 CMA 2F 1 4
14 8013 MOV LA 6F 1 4

15 8014 LXI D,0001 11 | 01|00 3 10
16 8017 DAD D 19 1 10
17 8018 MOV AH 7C 1 4

18 8019 ORI 80 F6 | 80 2

19 801B | POSITIVE MOV H,A 67 1

20 801C SHLD 8054 22 | 54 | 80 3 16
21 801F HLT 76 1 5

TOTAL =32

Department of Electronics & Communication Engineering
8085 31

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

Result of Program3.6:

SETI »
Input Output
Address|Content |Remarks Mem. Address |Content |Remarks
8050 |AA Lower Byte of Minuend 8054 8A
Positive Result

8051 46 Higher Byte of Minuend 8055 36
8052 (20 Lower Byte of Subtrahend

X Result = 368 AH = 13962
8053 10 Higher Byte of Subtrahend

Minuend = 46AAH = 18090
Subtrahend = 1020H = 4128

SET2 »

Input Output

Address|Content | Remarks Mem. Address |Content |Remarks

8050 20 Lower Byte of Minuend 8054 SA

8051 10 Higher Byte of Minuend 8055 B6 Negative Result
8052 |AA Lower Byte of Subtrahend

8053 |46 Higher Byte of Subtrahend Result=B68AH =-13962

Minuend = 1020H = 4128
Subtrahend = 46AAH = 18090

3.7: Write a program to multiply two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the result of multiplication from the memory location
8052 onwards using successive addition.

Method 1: For multiplication of two 8-bit numbers, the result of the multiplication will be
maximum, if both multiplicant and multiplier will be maximum i.e. multiplicant = FFH and
multiplier = FFH. In this case the result of multiplication will be FEO1H which is 16-bit long.
Therefore we need atleast two consecutive memory locations to store the result of multiplaction.
For this reason, the result of the multiplication should be stored at two successive memory locations
8052 and 8053, where 8052 should hold the lower byte and 8053 should hold the higher byte. Here
repeatative addition is utilized to implement the program. For example, suppose multiplicant = 05
and multiplier = 09, that means to get the product we have to perform (00 + 09 + 09 + 09 + 09 + 09)
which implies that multiplicant should be taken as the counter and the addition of multiplier with
itself should be done for several times by using the counter.

Department of Electronics & Communication Engineering
8085 32

START

Initialize register D with 00 so that it
can be incremented by one each
time If carry occurs after every
addition. Register D s used to store
the higher byte of the result of
multiplication.

.

Initialize HL register pair with
address where 8-bit multiplicantis
stored

!

Copy the content of the memaory
location pointed by HL register pair
i.e. the multiplicant into accumulator

!

Increment HL register pair by one to
point the next address where 8-bit
multiplier iz stored

h 4

Initialize the accumulator with 00

h

Add the content of accumulator with
the content of the address pointed

by HL register pair i.e the multiplier
and the result of the addition will be
stored inside the accumulator.

E

T

Yes

Increment the content of register D
by one

o
el

Mo

h J

Decrement the content of register C
by one as a counter

Mo
RegisterC =07

Store the content of accumulator i.e
the lower byte of the result and the
content of register D i.e. the higher
byte of the result will be stored at
two consecutive memaory locations

1g-3.13: Flowchart of multiplication of two 8-bit numbers using successive addition

Department of Electronics & Communication Engineering

8085

_HEERIY,
T
il |

)
Joa‘\.fh. V&

& College of Engineering and Management, Kolaghat.

CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.7 (Method 1):

SL. Addresses | Label | Mnemonics | Hex Codes | No. of Bytes | No. of T-States

1 8000 MVI D,00 16 | 00 2 7

2 8002 LXIH,8050 | 21 | 50 | 80 3 10

3 8005 MOV CM 4E 1 7

4 8006 INXH 23 1 6

5 8007 XRAA AF 1 4

6 8008 LOOP /ADDM 86 1 7

7 8009 JNC SKIP D2 | 0D | 80 3 10 (True) /7
(False)

8 800C INR D 14 1 4

9 800D SKIP |DCRC 0D 1 4

10 800E JINZLOOP | C2 | 08 | 80 3 10 (True) / 7
(False)

11 8011 INX H 23 1 6

12 8012 MOV M,A 77 1 7

13 8013 INX H 23 1 6

14 8014 MOV M,D 72 1 7

15 8015 HLT 76 1 5

TOTAL =22

Department of Electronics & Communication Engineering

8085

34

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 3: Programs on Arithmetic and Logical Operations

Method 2: For multiplication of two 8-bit numbers, the result of the multiplication will be
maximum, if both multiplicant and multiplier will be maximum i.e. multiplicant = FFH and
multiplier = FFH. In this case the result of multiplication will be FEO1H which is 16-bit long.
Therefore we need atleast two consecutive memory locations to store the result of multiplaction.
For this reason, the result of the multiplication should be stored at two successive memory locations
8052 and 8053, where the memory locations 8052 and 8053 will hold the lower byte and the higher
byte of the result. Here repeatative addition is not utilized to implement the program, because it will
take long time to execute the program. That's why the technique of manual multiplication of two
binary numbers is used here. Here the 8-bit multiplier is copied to register B first. Then 8-bit
multiplicand is also copied to register E and register D is initialized to 00H, because the aim is to
store the 16-bit multiplicand or the left shifted pattern of the 16-bit multiplicand inside the register
pair DE. Register pair HL is utilized to store the 16-bit result ultimately and it is initialized to
0000H at the beginning.

The bits of the divisor are searched starting from LSB to MSB one by one. If LSB is found 1, add
the 16-bit multiplicand formed by adding 8 no. of 0 at the MSB side, with the content of register
pair HL and the result is stored again into the same HL pair. If the next bit of the LSB of the
multiplier is 1, the 16-bit multiplicand shifted one position left will be added. This process will
continue upto the MSB of the multiplier. If any bit of the multiplier is found 0, no action is taken
except the multiplicand will be shifted left by one position. In this program, after shifting the
multiplicand left each time and inserting zero from the side of LSB, it will be stored into the DE
register pair. For better understanding let's take an example of 8-bit multiplication.

8-bit Multiplicant (x) = 1110 0010
8-bit Multiplier (y) = 1110 0111
15 14 13 12 11 10 9 8

Multiplicant(x): 1 1 1 0 0 0 1 0
Multiplier (y): 1 1 1

~
SN
(9N
~

(e}
—_—
—
—

_.
S = = o

o o —- o o

o o o o o ~—

- o O O © = =
S = O O O = o= =
©C O = O O O = =
o o o o ©o © © ~
o o ©o o ©o © ©o o
© o o o ©o —~ o ©o
© o o o ©o © — o
© o o o o ©o © =~
o o ©o o ©o © ©o o

1100101111101 110

Department of Electronics & Communication Engineering
8085 35

ge of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

The above mentioned example clearly explains that how the multiplication of two 16-bit numbers
are being done manually. Now the flowchart of this program is given in Fig-3.14.

:

Initialize HL register pair to the address where 8-bit
Multiplicant is stored

Copy the content of the address pointed by HL register Yes
pair i.e the 8-bit Multiplicant inside the register E and
make the content of register D to be D0H, so that the DE The content of register pair DE will be added with the
register pair can hold the left shifted version of the content of the register pair HL and after the addition the
Multiplicant result will be stored again inside the register pair HL
Copy the &-bit Multiplier into the register B l
The content of register DE is shifted left bitwise by one bit position
¢ and zero is inserted at the LSB position and the left shifted pattern of
HL register pair is being used to store the 16-bit result of e Muliplicantisapain sired In he Tegisier palr Dk
the multiplication and it is loaded with 0000H initially l

!

The content of register B i.e. the 8-bit Multiplier is shifted

The content of the accumulator is made 00

right bitwise to affect the carry flag and zero is inserted at l
the MSB position, so that each bit of the Multiplier can be
checked for 0 or 1"and the right shifted pattern of the Right shifted pattern of the Multiplier which is stored into the register
Multiplier is again stored in the register B B. is operated with bitwise OR operation with the content of the
accumulatorie. A=A+B

No

Accumulator=0 7

Copy the 16-bit result which is stored in the HL register pair, into

two consecutive addresses 8052 and 8053 in such a way that the

lower byte of the result will be stored at 8052 and the higher byte
of the result will be stored at 8053

—
END

Fig-3.14: Flowchart of multiplication between two 8-bit numbers

Assembly Language Program 3.7 (Method 2):

SL. Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,8050 21150 | 80 3 10
2 8003 MOV EM SE 1 7
3 8004 MVI D,00 16 | 00 2 7
4 8006 INX H 23 1 6
5 8007 MOV B.M 46 1 7
6 8008 LXI H,0000 21100 | 00 3 10

Department of Electronics & Communication Engineering
8085 36

=
S

Y.

&% College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
7 800B LOOP MOV A,B 78 1 4
800C STC 37 1 4
9 800D CMC 3F 1 4
10 800E RAR IF 1 4
11 800F MOV B.A 47 1 4
12 8010 INC D2 14| 80 3 10 (True) /7
NOACTION (False)
13 8013 DAD D 19 1 10
14 8014 NOACTI MOV A,E 7B 1 4
ON
15 8015 STC 37 1 4
16 8016 CMC 3F 1 4
17 8017 RAL 17 1 4
18 8018 MOV E,A SF 1 4
19 8019 MOV A,D TA 1 4
20 801A RAL 17 1 4
21 801B MOV D,A 57 1 4
22 801C XRAA AF 1 4
23 801D ORAB BO 1 4
24 801E JNZ LOOP C2/0B| 80 3 10 (True) / 7
(False)
25 8021 SHLD 8052 22 152 80 3 16
26 8024 HLT 76 1 5
TOTAL =37
Result of Program3.7:
SETI »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
8050 FF Nol (Multiplicand) ||8052 04 Lower Byte of Result
8051 FC No2 (Multiplier) 8053 FB Higher Byte of Result

Department of Electronics & Communication Engineering

8085

37

-:E""e College of Engineering and Management, Kolaghat.
N7

=< CH 3: Programs on Arithmetic and Logical Operations

SET2 »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

8050 99 Nol (Multiplicand) ||8052 9A Lower Byte of Result
8051 AA No2 (Multiplier) 8053 65 Higher Byte of Result

3.8: Write a program to multiply two 16-bit numbers which are stored from 8050 onwards and
8052 onwards, Result should be stored from the memory location 8054 onwards.

For multiplication of two 16-bit numbers, the result of the multiplication will be maximum, if both
multiplicant and multiplier will be maximum i.e. multiplicant = FFFFH and multiplier = FFFFH. In
this case the result of multiplication will be FFFEOOO1H which is 32-bit long. Therefore we need
atleast four consecutive memory locations to store the result of multiplaction. For this reason, the
result of the multiplication should be stored at four successive memory locations 8054, 8055, 8056
and 8057 from least significant byte to most significant byte. Here repeatative addition is not
utilized to implement the program, because it will take long time to execute the program. That's
why the technique of manual multiplication of two binary numbers is used here. As the result is four
bytes long, a consecutive block of four memory locations from 8054 to 8057 will be initialized to
00000000H so that every time the multiplicant or the left shifted version of the multiplicant can be
added with the content of that block of memory and the result of addition can be stored again into
the same block of memory (8054 — 8057).

The bits of the divisor are searched starting from LSB to MSB one by one. If LSB is found 1, add
the 32-bit multiplicant formed by adding 16 no. of 0 at the MSB side, with the content of memory
block (8054 — 8057) and the result is stored again into the same block. If the next bit of the LSB of
the multiplier is 1, the 32-bit multiplicant shifted one position left will be added. This process will
continue upto the MSB of the multiplier. If any bit of the multiplier is found 0, no action is taken
except the multiplicant will be shifted left by one position. In this program, after shifting the
multiplicant left each time and inserting zero from the side of LSB, it will be stored at the memory
locations starting from 8058 to 805B. For better understanding let's take an example of 16-bit
multiplication which is done using the above mentioned technique.

Department of Electronics & Communication Engineering
8085 38

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

16-bit Multiplicant (x) = 1001 0111 1110 0010 & 16-bit Multiplier (y) = 1100 0011 1110 0111
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 & 7 6 5 4 3 2 1 0

Muliplicant(x) 1 0 0 1 0 1 1 1 1 1 1 0 0 0 1 0
Multiplier(y): 1 1 0 0 0 0 1 1 1 1 1 0 0 1 1 1

1 001011111 T1UO0O0O0T1F@©0

1 oo1ro0o11r111r10001°O0@O0

1 oo0o1o011111100O0T1T0TO00O0

0 0000O0OO0OOOOOOOOOOTO0OTO0ODO

00 0O0O0OOOOOOOOOOOOOO0OO0OTO

1 00101111 1100O01°O0O0O0O0TO0OQO0

1 o01011111100O01O0O0O0O0TO0OTO0O@O

!l oo01o0111r11100O01O0O0O0O0OO0OTO0TO0O

1 oo01o011111100O01O0O0O0OO0OO0OO0OO0O0OTGO

!l oo01o011111100O01O0O0O0O0O0OO0OO0OO0OTO0OQO0
000O0OO0OOOOOOOOOOOOOOOOO0OO0OO0OO.0OO0OO0
o00O0OO0OOOOO0OOTOOOOOOOOOOOSOOOOOO0OO0OTO

00 0O0OO0OOOTOOOOOOOOOOOOOOSOOSOOO0OO0OSQO0OTOQ
00 0O0OO0OOOTOOOOOOOOOOOSOOOOOODOOOOO0OO0ODO0
!l oo01011111r100O01O0O0O0O0O0O0O0ODO0OO0OO0OLOOOO0OO0OSTO0OOQO0
1 o0o01ro0111r11100O01O0O0O0O0OO0OO0OO0OO0OO0OOOOO0OO0OOS®O0OOQ0

6111010090 01110100011001011101110

The momory locations for storing the 16-bit multiplicant, 16-bit multiplier, 32-bit result and 32-bit
shifted pattern of multiplicant initially are shown pictorically in Fig-3.15 below.

F N

8050 Lower byte of multiplicant 16-bit
&051 Higher byte of multiplicant y Multiplicant
8052 Lower byte of multiplier 4 16-bit
8053 Higher byte of multiplier y Multiplier
8054 Byte1 of the result (00H) 4
8055 Byte2 of the result (00H) SE'DiITt
esu

8056 | Byte3d ofthe result (00H) initially
8057 Byte4 of the result (00H) v

e A
8058 Lower byte of multiplicant 30.Bit lft
8053 | Higher byte of multiplicant shifted
BO5A 0oH multiplicant
aoii P initially

Fig-3.15: Memory locations containing Multiplicant, Multiplier, Result, Left shifted Multiplicant

Department of Electronics & Communication Engineering
8085 39

ge of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

The above mentioned example clearly explains that how the multiplication of two 16-bit numbers

are being done manually. Now the flowchart of this program is given in Fig-3.16.

Make the contents of the memory
locations 6054 to 8057 where the
result will be stored, to be zero

v

Copy the contents of 8050 and
B051 (Multiplicant) into memory
locations 8058 and 8059
respectively and the contents of
B05A and B05B are made 00H.

v

16-bit Multiplier is shifted right bitwise to affect the carry
flag and zero is inserted at the MSB position, so that each
bit of the Multiplier can be checked for 0 or 1" and the right

shifted pattern of the Mulliplier is again stored in the same
memaory locations of Multiplier

Carry ?

Yes

Add the 32-bit contents stored from 8054 to 8057 with the
32-bit contents stored from 8058 to 8058 and store the
result of this 32-bit addition again info the memory
locations starting from 8054 to 8057. Basically the
contents of G054 to 8057 will be the result of multiplication
ultimately and the contents of 8058 to B05B is the left
shifted version of multiplicant.

!

32-bit content of memary locations from 6058 to 8058 i.e.
the 32-bit Multiplicant is shifted left bitwise by ane bit
position and zero is Inserted at the L SB position and the

b4

left shifted pattern of the Multiplicant is again stored in the
same memory locations from 8058 to 8058

v

16-bit content of the memory
locations at 8052 and 8053 (Right
shifted pattern of Multiplier) is
copied to HL register pair.

l

Bitwise OR operation is performed
between the contents of Hand L
registers to check both of them are
zero or not.

No

Yes

END

Fig-3.16: Flowchart of multiplication between two 16-bit numbers

Assembly Language Program 3.8:

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LHLD 8050 2A | 50 | 80 3 16
2 8003 SHLD 8058 22 | 58 | 80 3 16
8006 LXI H,0000 21 | 00 | 00 3 10

Department of Electronics & Communication Engineering
8085

ﬁf:”% College of Engineering and Management, Kolaghat.
JO\;{‘__ -'fQ

“=« CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
4 8009 SHLD 8054 22 | 54 | 80 3 16

5 800C SHLD 8056 22 | 56 | 80 3 16

6 800F SHLD 805A 22 | 5A | 80 3 16

7 8012 LOOP |STC 37 1

8 8013 CMC 3F 1 4

9 8014 LXI H,8053 21 | 53 | 80 3 10
10 8017 MOV AM 7E 1 7

11 8018 RAR 1F 1 4

12 8019 MOV M,A 77 1 7

13 801A DCXH 2B 1 6

14 801B MOV AM 7E 1 7

15 801C RAR 1F 1 4
16 801D MOV M,A 77 1 7

17 801E JNC SKIP D2 | 34 | 80 3 10 (True) / 7

(False)

18 8021 MVI C,04 OE | 04 2 7

19 8023 LXI D,8058 11 | 58 | 80 3 10
20 8026 LXI H,8054 21 | 54 | 80 3 10
21 8029 STC 37 1 4
22 802A CMC 3F 1 4
23 802B REPEAT LDAX D 1A 1 7
24 802C ADCM 8E 1 7
25 802D MOV M,A 77 1 7
26 802E INX D 23 1 6
27 802F INXH 13 1 6
28 8030 DCR C 0D 1 4
29 8031 JNZ REPEAT | C2 | 2B | 80 3 10 (True) / 7

(False)

30 8034 SKIP |CALL SHIFT |CD | 40 | 80 3 18
31 8037 LHLD 8052 2A | 52 | 80 3 16

Department of Electronics & Communication Engineering
8085 41

!
.

Y.

\a% College of Engineering and Management, Kolaghat.
=< CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
32 803A MOV A,L 7D 1 4
33 803B ORAH B4 1 4
34 803C JINZ LOOP C2| 12 | 80 3 10 (True) / 7
(False)
35 803F HLT 76 1 5
36 8040 SHIFT |STC 37 1 4
37 8041 CMC 3F 1 4
38 8042 MVI C,04 OE | 04 2 7
39 8044 LXI H,8058 21 | 58 | 80 3 10
40 8047 ROTATE MOV AM 7E 1 7
41 8048 RAL 17 1 4
42 8049 MOV M,A 77 1 7
43 804A INX H 23 1 6
44 804B DCR C 0D 1 4
45 804C JINZ ROTATE | C2 | 47 | 80 3 10 (True) / 7
(False)
46 804F RET C9 1 10
TOTAL =80
Result of Program3.8:
SETI »
Input Output
Address | Content | Remarks Address |Content |Remarks
8050 |FF Lower Byte of Multiplicand | |8054 02 Bytel of Result
8051 FC Higher Byte of Multiplicand | |8055 0A Byte2 of Result
8052 FE Lower Byte of Multiplier 8056 09 Byte3 of Result
8053 FB Higher Byte of Multiplier 8057 F9 Byte4 of Result

Department of Electronics & Communication Engineering

8085

42

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SET2 »

Input Output

Address | Content | Remarks Address |Content |Remarks

8050 |DD Lower Byte of Multiplicand | |8054 46 Bytel of Result
8051 FC Higher Byte of Multiplicand | |8055 E3 Byte2 of Result
8052 |FE Lower Byte of Multiplier 8056 FA Byte3 of Result
8053 00 Higher Byte of Multiplier 8057 00 Byte4 of Result

3.9: Write a program to divide two 8-bit binary numbers which are stored at the memory
locations 8050 and 8051 and also store the quotient at 8052 and remainder at 8053 after the
division. Assume the divident is stored at the memory location 8050 and the divisor at 8051.

In case of division of two 8-bit numbers, the quotient and the remainder both will be 8-bit long.
Therefore we need two consecutive memory locations to store the result of the division. For this
reason, here the result of the division should be stored at two successive memory locations 8052
and 8053, where 8052 should hold the quotient and 8053 should hold the remainder. Here
repeatative subtraction is utilized to perform the division between two 8-bit numbers. For example,
suppose divident = OE and divisor = 03. Hence to get the quotient we have to perform subtraction
(divident — divisor) and the subtraction will continue until divident will be less than the divisor. In
this way, we will get the quotient to be 04. When the divident will be just less than the divisor, then
remainder will be equal to divident and we will get the remainder to be 02 here. Therefore we have
to take a counter with a initial value of 00 in this case and increment the counter by one each time
the subtraction is done. Ultimately, the value of the counter will be the quotient after the completion
of the division. But one thing is important to note that if the divisor = 00, the successive subtraction
will go on for infinite times, because of the division-by-zero error. We have to consider that
situation also. The value of the divisor should be checked and if the divisor is zero, the program
must be halted immediately.

Department of Electronics & Communication Engineering
8085 43

_ ‘*”% College of Engineering and Management, Kolaghat.
‘= CH 3: Programs on Arithmetic and Logical Operations

START ¢
The content of register B {divident)
is copied to the accumulator so that

the divident and the divisar can be
compared

Initialize register D with 00 so that it
can be incremented by one each
time the subtraction is done for
storing the quotient of the division.

v

Initialize HL register pair with
address where §-bit divident is
stored

v

Copy the content of the memory of the accumulator and the resultis

location pointed by HL register pair stored again into accumulator.
i.e. the divident into register B

'L | [Increment the content of the register

Increment HL register pair by one fo D (quotient) by ane

point the next address where 8-bit
divisor is stored ¢

The content of register D i.e the

Divident < Divisor ?

Subtract the divisor from the content

Initialize the accumulator with 00 so quotient and the content of the
that the content of the Divisor can accumulator i.e. the remainder will
be compared with 00 be stored at two consecutive

memory locations

Fig-3.17: Flowchart of division of two 8-bit numbers using successive subtraction

Divisor=07

Yes

Assembly Language Program 3.9:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States

1 8000 MVI D,00 16 | 00 2 7

2 8002 LXI H,8050 21 | 50 | 80 3 10

3 8005 MOV B.M 46 1 7

4 8006 INXH 23 1 6

5 8007 XRAA AF 1 4

6 8008 CMPM BE 1 7

7 8009 JZ ZERO CA | 1A | 80 3

8 800C MOV A.B 78 1 4

9 800D AGAIN |[CMPM BE 1 7

10 800E JC SKIP DA | 16 | 80 3 10 (True) /7

Department of Electronics & Communication Engineering
8085

44

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
(False)
11 8011 SUB M 96 1 7
12 8012 INR D 14 1 4
13 8013 JMP AGAIN C3 | 0D | 80 10 (True) /7
(False)
14 8016 SKIP |INXH 23 1 6
15 8017 MOV M,D 72 1 7
16 8018 INX H 23 1 6
17 8019 MOV M,A 77 1 7
18 801A ZERO |HLT 76 1 5
TOTAL =27
Result of Program3.9:
SETI »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
8050 FF Nol (Divident) 8052 19 Quotient
8051 0A No2 (Divisor) 8053 05 Remainder
SET2 »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
8050 OF Nol (Divident) 8052 00 Quotient
8051 10 No2 (Divisor) 8053 OF Remainder

Program 3.10: Write a program to divide two 16-bit binary numbers which are stored from the
memory locations 8050 onwards and 8052 onwards and also store the quotient from the memory
location 8054 onwards and the remainder from the memory location 8056 onwards after the
division. Assume the divident is stored from the memory location 8050 onwards and the divisor
from the memory location 8052 onwards.

In case of division of two 16-bit numbers, the quotient and the remainder both will be 16-bit long.
Therefore we need four consecutive memory locations to store the result of the division. For this

Department of Electronics & Communication Engineering

8085

45

College of Engineering and Management, Kolaghat.
CH 3: Programs on Arithmetic and Logical Operations

reason, here the result of the division should be stored at four successive memory locations 8054,
8055, 8056 and 8057, where 8054 and 8055 should hold the quotient and 8056 and 8057 should
hold the remainder. Here repetitive subtraction is utilized to perform the division between two 16-
bit numbers. Therefor, the same concept like division of two 8-bit numbers will be applied here.
The flowchart of the program to implement 16-bit division is shown in Fig-3.18 below.

SUB-ROUTINE MAIN PROGRAM

Initialize register pair BC to 0000 to
store the 16-bit quotient inside it.

The higher byte of the divident is
compared with the higher byte of
the divisor l

A subroutine is called to determine
the 16-bit divident is less than the
16-bit divisor or not

h 4

Yes

Higher byte of Divident =

. —
Higher byte of Divisor ? RO IR

Subtract the lower byte of the divisor
from the lower byte of the divident
and store the resultin place of the

The lower byte of the divident is location where the lower byte of the
compared with the lower byte of the divident was saved
divisor "1'

Subtract the higher byte of the
divisor from the higher byte of the
divident considering the previous

stage borrow and store the result in
place of the location where the
higher byte of the divident was
saved

¥

Increment the content of the BC
register pair (16-bit quotient) by one

Return to Main
Program

y

The content of the register pair BC
i.e the 16-bit quotient and the 16-bit
remainder will be stored at four
consecutive memory locations

END
“-\.‘-\-‘——

Fig-3.18: Flowchart of the program performing division between two 16-bit numbers

Department of Electronics & Communication Engineering
8085 46

ﬁf:”% College of Engineering and Management, Kolaghat.
LN

“w= CH 3: Programs on Arithmetic and Logical Operations

Assembly Language Program 3.10:

SL. | Addresses | Label | Mnemonics Hex Codes | No. of Bytes No. of T-States
1 8000 LXI B,0000 01 |00 | 00 3 10
2 8003 LOOP |CALLCOMP | CD |26 | 80 3 18
3 8006 JC SKIP DA |1B| 80 3 10 (True) / 7 (False)
4 8009 LXI D,8050 1T |50 | 80 3 10
5 800C LXI H,8052 21 |50 | 80 3 10
6 800F LDAX D 1A 1 7
7 8010 SUB M 96 1 7
8 8011 STAX D 12 1 7
9 8012 INX D 13 1 6
10 8013 INX H 23 1 6
11 8014 LDAX D 1A 1 7
12 8015 SBB M 9E 1 7
13 8016 STAX D 12 1 7
14 8017 INX B 03 1 6
15 8018 JMP LOOP C3 |03 80 3 10 (True) / 7 (False)
16 801B SKIP |[INX H 23 1 6
17 801C MOV M,C 71 1 7
18 801D INX H 23 1 6
19 801E MOV M,B 70 1 7
20 801F LHLD 8050 | 2A |50 | 80 3 16
21 8022 SHLD 8056 22 |56 | 80 3 16
22 8025 HLT 76 1 5
23 8026 COMP |LXI D,8051 11 |51 80 3 10
24 8029 LXI H,8053 21 |53 | 80 3 10
25 802C LDAX D 1A 1 7
26 802D CMPM BE 1 7
27 802E JINZNOEQU | C2 |35 | 80 3 10 (True) / 7 (False)
28 8031 DCX D 1B 1 6

Department of Electronics & Communication Engineering
8085 47

College of Engineering and Management, Kolaghat.

CH 3: Programs on Arithmetic and Logical Operations

SL. | Addresses | Label | Mnemonics Hex Codes | No. of Bytes No. of T-States
29 8032 DCXH 2B 1 6
30 8033 LDAX D 1A 1 7
31 8034 CMPM BE 1 7
32 8035 NOEQ |RET C9 1 10
U
TOTAL = 54
Result of Program3.10:
SETI »
Input Output
Address | Content | Remarks Address |Content |Remarks
8050 |FF Lower Byte of Divident 8054 7E Lower Byte of Quotient
8051 FC Higher Byte of Divident 8055 00 Higher Byte of Quotient
8052 |FE Lower Byte of Divisor 8056 FB Lower Byte of Remainder
8053 01 Higher Byte of Divisor 8057 01 Higher Byte of Remainder
SET2 »
Input Output
Address | Content | Remarks Address |Content |Remarks
8050 |AA Lower Byte of Divident 8054 05 Lower Byte of Quotient
8051 BB Higher Byte of Divident 8055 00 Higher Byte of Quotient
8052 55 Lower Byte of Divisor 8056 01 Lower Byte of Remainder
8053 22 Higher Byte of Divisor 8057 10 Higher Byte of Remainder

8085

Department of Electronics & Communication Engineering

48

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 3: Programs on Arithmetic and Logical Operations

Exercise

1) Write a program to multiply an 8-bit number stored at memory location 8050H with 2, 4 and 8.
Store the three results of multiplication starting from 8060 onward.

2) Write a program to add first ten natural numbers and store the result at memory location 9000H.
3) Write a program to add first ten odd numbers and store the result at memory location 8050H.
4) Write a program to add first ten even numbers and store the result at memory location 8050H.

5) Write a program to find out the sum of the following series and store the result of summation in
DE register pair. 1+2+4+7+11+ .. up to 10 no. of terms

6) Write a program to count no. of 1s in an 8-bit binary number stored at memory location 8050.

7) Write a program to check whether an 8-bit number stored at memory location 8060 is odd or
even. Store 0DH at memory location 8061 if the number is odd, otherwise store EEH at the same
memory location.

8) Write a program to check a number stored at 8050H is divisible by 4 or not. If it is divisible by 4,
store 01H at 8051H, otherwise store 00H at the same memory location.

9) Write a program to find out 1’s complement of a number stored at memory location 8050H
without using CMA instruction. [Hint: XRI FFH]

10) Write a program to determine the sum of two 8-bit numbers stored at memory locations 8050H
and 8051H respectively without using ADD instruction.

11) Write a program to find out 2’s complement of an 8-bit number stored at 9000H.

12) Write a program to find out 2’s complement of a 16-bit number which is stored at memory
location 9000H (lower byte of the number) and 9001H (higher byte of the number). The 2’s
complement of the number is to be stored at DE register pair.

13) Write a program to add two 32-bit binary numbers which are stored at the memory locations
starting from 9050 onward and the memory locations starting from 9060 onwards. Store the
result of the addition starting from memory location 9070 onward.

14) Write a program to check whether a number is positive or negative without using CMP/ CPI
instruction.

Department of Electronics & Communication Engineering
8085 49

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 3: Programs on Arithmetic and Logical Operations

15) Write a program to subtract two 8-bit numbers stored at memory locations 8050H and 8051
respectively using 2’s complement.

16) Write a program to determine the value of 2" where n is stored at memory location 8050H.
17) Write a program to swap the nibbles of an 8-bit number stored at memory location 8060H.

18) Write a program to find the mean of two 8-bit numbers stored at memory locations 8050H and
8051 respectively. Store the mean value at memory location 8052H. Consider both of the
numbers either even or odd to get the mean value to be integer.

19) Write a program to determine the n™ term of an AP series, where the value of n, first term a and
common difference d are stored at memory locations 8050H, 8051H and 8052H respectively.
Store the n" term at memory location 8053H.

20) Write a program to determine the half of an 8-bit even number stored at memory location
8050H. (Do not use division by 2)

21) Write a program to check whether a number stored at 8050H is equal or greater or less than
100. If the number is equal store EAH, if greater than store ABH and if less than store BEH at
memory location 8051H, where EA represents EQUAL, AB represents ABOVE and BE
represents BELOW.

22) Memory location 8050H stores the marks of a student out of 100. Write a program to store the
Grade of the student depending upon the following criteria at memory location 8051H.
1. 90<Marks<100 — Grade O — Store 00H
80 < Marks <90 — Grade E — Store EEH
70 < Marks < 80 — Grade A — Store AAH
60 < Marks <70 — Grade B — Store BBH
50 < Marks < 60 — Grade C — Store CCH
40 < Marks < 50 — Grade D — Store DDH
Marks < 40 — Grade F — Store FFH

Nk LD

Department of Electronics & Communication Engineering
8085 50

‘*”z College of Engineering and Management, Kolaghat.
%=« CH 4: Programs on Data Transfer and Data Separation

4. Programs on Data Transfer and Data Separation

4.1: Write a program to transfer a block of ten data stored starting from the memory location
8050 onward to the memory location 8060 onward in forward direction.

This program basically performs the copy operation of a block of some data which are stored in the
memory locations consecutively. Here a set of ten 8-bit numbers are to be transferred from one
memory locations to another memory locations. The memory locations where the ten numbers are
stored, is called source block and the memory locations where the ten numbers have to be
transferred is called destination block. In this program the source block starts from the address 8050
to 8059 and the destination block starts from the address 8060 to 8069, which implies that the
number of 8050 will be copied to 8060, the number of 8051 will be copied to 8061, the number of
8052 will be copied to 8062 and so on. Therefore the structure of the source block and the
destination block before the execution of the program and after the execution of the program is
shown in Fig-4.1 below for clear conception.

Before Execution of The Program After Execution of The Program
+ sos0 10 I ' + sos0 10 -
8051 20 — 8051 20 —
8052 30 ' 8052 30
courcE 6053 40 | 8053 40
ik 8054 50 - 8054 50
8055 60 8055 60
8056 70 . 8056 70
8057 80 i 8057 80
8058 90 ! 8058 90
8059 A ' 8059 A0
Data | _ Data
Flow ! Flow
£ 080 Garbage Value |« Direction A so60 10 e Direction
8061 Garbage Value |[€— 8061 20 [e—
aoez2 Garbage Value |« 8062 30 <
G063 Garbage Value € : 8063 40 L3
DESBTL'S‘SEON 8064 | Garbage Value |e : DES;_'E")‘SEDN 8064 50 <
G065 Garbage Value [« 8065 60 b3
G066 Garbage Value [8066 70 <
BOET Garbage Value € 8067 80 <
8068 Garbage Value < 8068 90 <
8069 | Garbage Value |« 8060 AD L

Fig-4.1: The source block and the destination block before and after execution of the program

It is being seen from the above figure that the numbers stored in the source block remain unchanged
after the execution of the program. Hence it is exactly similar to the copy operation where source
remains unchanged but destination is changed with the contents of the source. Now the flowchart of
this program is shown in Fig-4.2.

Department of Electronics & Communication Engineering
8085 51

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Load register H with 0A fo iterate
the loop for 10 times, because ten
numbers have to be transfered

!

Initialize BC reqister pair with the
starting address of the source block

!

Initialize DE register pair with the
starting address of the destination
block

!

Copy the content of the address
pointed by BC register pair into
accumulator and transfer that
content of accumulator into the
memaory location pointed by DE
register pair

!

Increment the content of BC register
pair by one

!

Increment the content of DE register
pair by one

i

¥

Decrement the content of the
register H by one

Register H=07

Fig-4.2: Flowchart of transfering a block of ten data from one locations to another locations

Department of Electronics & Communication Engineering
8085

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.1:

SL. | Addresses Label Mnemonics | Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI H,0A 26 | 0A 2 7
2 8002 LXIB,8050 |01 50 | 80 3 10
3 8005 LXI D,8060 11| 60 | 80 3 10
4 8008 LOOP |LDAXB 0A 1 7
5 8009 STAX D 12 1 7
6 800A INX B 03 1 6
7 800B INX D 13 1 6
8 800C DCR H 25 1 4
9 800D INZ LOOP C2| 08 | 80 3 10 (True) /7
(False)
10 8010 HLT 76 1 5
TOTAL =17
Result of Program 4.1:
SETI »
Input Output
Source Block Destination Block
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 11 Nol 8060 11 Nol
8051 22 No2 8061 22 No2
8052 33 No3 8062 33 No3
8053 44 No4 8063 44 No4
8054 55 No5 8064 55 No5
8055 66 Nob6 8065 66 No6
8056 77 No7 8066 77 No7
8057 88 No8 8067 88 No8
8058 99 No9 8068 99 No9
8059 AA Nol0 8069 AA Nol0

Department of Electronics & Communication Engineering

8085

“’F é”% College of Engineering and Management, Kolaghat.
== CH 4: Programs on Data Transfer and Data Separation

4.2: Write a program to transfer a block of ten data stored starting from the memory location
8050 onward to the memory location 8055 onward in forward direction.

Although this program seems to be same as the previous program, but it is different from the first
program. Because here the source block extends from the memory location 8050 to 8059 and the
destination block extends from 8055 to 805E. Therefore some locations (8055 to 8059) of the
source block are common to the destination block i.e. there is a overlapping region between the
source block and the destination block. Now if we start to copy the numbers from the starting
address of the source block to the starting address of the destination block, there will be a complete
mishap, some numbers of the source block stored from 8055 to 8059 will be completely lost before
they transfered to the destination block. Here our aim is to copy the contents of the entire source
block to the destination block as it is, though the source block will not remain intact. What will
happen if we follow the procedure of the first program, is shown pictorially in Fig-4.3 below.

Before Execution of The Program ' After Execution of The Program
% soso 10 8050 10
SOURCE 6051 20 : SQURCE 8051 20
BLOCK 8052 30 5 BLOCK 8052 30
6053 40 ! 8053 40
8054 50 8054 50
B 8055 60 £ | TR 8055 10 ¥
8056 70 o 8056 20 .
8057 80 O";g;fzpn'”g 8057 30 D‘:g;m”g
8058 90 | 8058 40
DESBTL'E")’SLDN _ y 8059 AD v DESBTL'E")’[":‘;"DN 8059 50 v
805A | Garbage Value ; B05A 10
8058 | Garbage Value i 8058 20
805C | Garbage Value E 805C 30
805D | Garbage Value 805D 40
I B0SE Garbage Value : v B805E 50

Fig-4.3: The source block and the destination block following the procedure of the first program

To solve the above problem, we have to start the copy operation from the last address of the source
block to the last address of the destination block and go upward for the source block as well as the
destination block to transfer the numbers one by one. The status of the source block and the
destination block is shown pictorially before execution of the program and after execution of the
program in Fig-4.4 below.

Department of Electronics & Communication Engineering
8085 54

“’F é”% College of Engineering and Management, Kolaghat.
== CH 4: Programs on Data Transfer and Data Separation

Before Execution of The Program After Execution of The Program

.
T & sos0 10 : % sos0 10
SOURCE 8051 20 : SOURCE 8051 20
BLOCK 8052 30 | BLOCK 8052 30
8053 40 : 8053 40
L 8054 50 : L 8054 50
x 8055 60 4 [x 8055 10 4
8056 70 o 8056 20 _
8057 80 m;g;;pnmg 8057 30 m;ggfopr:”g
8058 90 | 8058 40
DESTMARCON | _y o059 AD % e i 8059 50 %
805A | Garbage Value ! 805A 60
8058 | Garbage Value | 8058 70
805C | Garbage Value | 805C 80
8050 | Garbage Value : 805D 90
. 805E | Garbage Value : . 805E AD

Fig-4.4: Status of the source block and the destination block following the modified procedure

Hence it is clear from the above figure that the whole data of the source block is now transfered
successfully in the destination block. The flowchart of this program is shown in Fig-4.5.

Department of Electronics & Communication Engineering
8085 55

Load register H with 0A to iterate
the loop for 10 times, because ten
numbers have to be transfered

.

Initialize BC register pair with the
last address of the source block

.

Initialize DE register pair with the
last address of the destination block

|

Y

Copy the content of the address
pointed by BC register pair into
accumulator and transfer that
content of accumulator into the
memary location pointed by DE
register pair

.

Decrement the content of BC
register pair by one

.

Decrement the content of DE
register pair by one

v

Decrement the content of the
register H by one

Register H=07%

Fig-4.5: Flowchart of data transfer from source block to destination block with overlapping area

Department of Electronics & Communication Engineering

8085

56

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.2:

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI H,0A 26 | 0A 2 7
2 8002 LXI B,8059 01 | 59 | 80 3 10
3 8005 LXI D,805E 11 | 5E | 80 3 10
4 8008 LOOP |LDAXB 0A 1 7
5 8009 STAX D 12 1 7
6 800A DCX B 0B 1 6
7 800B DCX D 1B 1 6
8 800C DCR H 25 1 4
9 800D JINZ LOOP C2| 08 | 80 3 10 (True) /7
(False)
10 8010 HLT 76 1 5
TOTAL =17
Result of Program 4.2:
SETI »
Input Output
Source Block Destination Block
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 11 Nol 8055 11 Nol
8051 22 No2 8056 22 No2
8052 33 No3 8057 33 No3
8053 44 No4 8058 44 No4
8054 55 No5 8059 55 No5
8055 66 Nob6 805A 66 No6
8056 77 No7 805B 77 No7
8057 88 No8 805C 88 No8
8058 99 No9 805D 99 No9
8059 AA Nol0 805E AA Nol0

Department of Electronics & Communication Engineering

8085

57

fp "”é College of Engineering and Management, Kolaghat.
N4

=< CH 4: Programs on Data Transfer and Data Separation

4.3: Write a program to separate positive numbers and negative numbers into two different
memory blocks from a set of ten 8-bit signed numbers which are stored consecutively starting
from the memory location 8050 onward. The positive block starts from 8060 onward and the
negative block starts from 8070 onward, where positive count and negative count will be stored at
the starting address of each block.

We know, if the MSB of a binary number is high, the number will be treated as negative number
and if the MSB is low, the number is considered as positive number. So, the MSB of each of the ten
8-bit binary numbers which are stored at the source block starting from 8050 to 8059, is checked for
high or low and is separated into two blocks of memory depending upon the status of MSB. The
memory block which is storing the positive numbers, is called the positive block and the memory
block which is holding the negative numbers, is called the negative block. The positive block starts
from 8060 onward, where the first memory location 8060 holds the number of count of positive
numbers i.e. how many positive numbers and all the positive numbers begins to be stored from
8061 onward. Similarly the negative block starts from 8070 onward, where the first location 8070
stores the number of count of negative numbers and all the negative numbers will be stored starting
from the memory location 8071 onward. For better understanding we have taken a set of ten data
and separated them accordingly.

Before Execution of The Program ! After Execution of The Program
“F e FF “F s FF
8051 20 : 8051 20
8052 AB] 8052 AB
80853 78] 8053 78
SOURCE | SOURCE
s 8054 7F | e 8054 7F
8055 64 i 8055 64
8056 5C ! 8056 5C
8057 oD : 8057 oD
BOSA a0 ! BO5E o0
v BO59 B5 v 8059 65
P | No. of
b eoe0 Garbage Value 4 8060 0e €— Positive
8061 | Garbage Value ! 2061 20 St
B0e2 Garbage Value | POSITVE 8062 78
8063 | Garbage Vale | BLOCK 8063 7F
PRSITIVE 8064 | Garbage Value : 8064 64
BLOCK . :
BOES Garbage Value | 065 5C
BOBE | Garage vaiue : BO6E 58
BOET Gamage Value
BOBE | Garbage Value
_y 0068 Garbage Yalue
g No. of
8070 04 [e— negaive
d 8071 FF Count
5 | NEGATIVE -
_ | Block 8072 AB
M 8070 | Garbage Value ; 8073 [2]3]
8071 | Garbage Value ! 8074 00

8072 Garbage Value
BO73 (GGarbage Value
BO74 Garbage Value
BO75 | Garbage Value
BO78 Garbage Value
&OTT Garbage Value
BO7A Garbage Yalue
_y boOve Garbage Value

NEGATIVE
BLOCK

Fig-4.6: Source block, positive block and negative block before and after execution of the program

Department of Electronics & Communication Engineering
8085 58

ge of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

As there are three memory blocks named as Source block, Positive block and Negative block, three
register pairs (HL, BC, DE) are used to point them. For example the source block, the positive
block and the negative block are pointed by HL, BC and DE register pair respectively. Therefore all
the general purpose resisters except accumulator are already used in this program and we have to
perform all the jobs required in this program should be accomplished by using accumuilator only.
That's why the memory location 804F, just before the strating address of the source block, is being
used as a counter to iterate the loop for ten times to separate ten signed binary numbers. Moreover
the starting address of the positive block and the starting address of the negative block are
initialized with OOH to store the positive count and the negative count respectively. The flowchart of
this program is given in Fig-4.7.

E

Initialize HL register pair with the
address just before the starting
address of the source block where
the number of iterations (Reration
Counter) of the loop will be saved

¥

Initialize BC register pair to the
starting address of the positive
block where the positive count will
be stored

Initialize DE register pair to the
starting address of the negative
block where the negative count will
be stored

v

Load DAH inside the address
pointed by HL register pair

Initialize the addresses pointed by
BC register pair and DE register
pair with 00 to count down the
positive count and the negative
count

Increment the HL resister pair to

| point the next address of the source

| block to fetch the numbers one by

one each time

!

Copy the content of the address
pointed by HL register pair and add
DOH with it to affect the sign flag

No

Increment BC register pair by one to
store the positive number in positive
block

v

Store the positive number into the
address pointed by BC register pair

v

Increment the positive count stored
in the first address of the positive
block

Yes

|

Increment DE register pair by one to
store the negative number in
negative block

v

Store the negative number into the
address pointed by DE register pair

v

Increment the negative count stored
in the first address of the negative
block

v

| Decrement the lteration Counter by

one

ig-4.7: Flowchart of separatin

No

Iteration Counter=0 ?

ositive and negative numbers from a set of ten signed numbers

Department of Electronics & Communication Engineering

8085

59

_HEERIY,
T
il |

)
Joa‘\.fh. V&

& College of Engineering and Management, Kolaghat.

CH 4: Programs on Data Transfer and Data Separation

Assembly Language Program 4.3:

SL. | Addresses Label Mnemonics | Hex Codes | No. of Bytes | No. of T-States
1 8000 LXIH,804F |21 | 4F | 80 3 10
2 8003 LXI B,8060 01| 60 | 80 3 10
3 8006 LXI D,8070 11| 70 | 80 3 10
4 8009 MVI A,0A 3E | OA 2 7
5 800B MOV M,A 77 1 7
6 800C XRAA AF 1 4
7 800D STAX B 02 1 7
8 800E STAX D 12 1 7
9 800F LOOP |INXH 23 1 6
10 8010 MOV AM 7E 1 7
11 8011 ADI 00 C6| 00 2 7
12 8013 M FA | 22 | 80 3 10 (True) / 7
NEGATIVE (False)
13 8016 INX B 03 1 6
14 8017 STAX B 02 1 7
15 8018 LDA 8060 3A| 60 | 80 3 13
16 801B INR A 3C 1 4
17 801C STA 8060 32 60 | 80 3 13
18 801F JMP SKIP C3| 2B | 80 3 10 (True) / 7
(False)
19 8022 NEGATIVE |INX D 13 1 6
20 8023 STAX D 12 1 7
21 8024 LDA 8070 3A1 70 | 80 3 13
22 8027 INR A 3C 1 4
23 8028 STA 8070 321 70 | 80 3 13
24 802B SKIP LDA 804F 3A | 4F | 80 3 13
25 802E DCR A 3D 1 4
26 802F STA 804F 32 | 4F | 80 3 13

Department of Electronics & Communication Engineering

8085

60

College of Engineering and Management, Kolaghat.
CH 4: Programs on Data Transfer and Data Separation

SL. | Addresses Label Mnemonics | Hex Codes | No. of Bytes | No. of T-States
27 8032 JINZ LOOP C2| OF | 80 3 10 (True) / 7
(False)
28 8035 HLT 76 1 5
TOTAL =54
Result of Program 4.3:
SETI »
Input Output
Source Block Positive Block Negative Block
Address | Content | Remarks Address |Content |Remarks| |Address |Content |Remarks
8050 |05 Nol 8060 07 Positive 8070 03 Negative
8051 oD No2 Count Count
%052 |DD No3 8061 05 +Nol 8071 DD -No3
8053 |AA No4 8062 0D +No2 8072 AA -No4
8054 12 No5 8063 12 +No5 8073 8F -No9
8055 |32 No6 8064 32 +Nob6
8056 |71 No7 8065 71 +No7
8057 |0A Nog 8066 0A +No8
8058 |SF No9 8067 0A +Nol0
8059 |0A Nol0
Department of Electronics & Communication Engineering
8085 61

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 4: Programs on Data Transfer and Data Separation

Exercise

1) Write a program to transfer a block of ten data stored starting from the memory location 8050
onward to the memory location 8060 onward in reverse order.

2) Write a program to separate odd numbers and even numbers into two different memory blocks
from a set of ten 8-bit numbers which are stored consecutively starting from the memory
location 8050 onward. The block of odd numbers starts from 8060 onward and the block of even
numbers starts from 8070 onward, where number of odd count and even count will be stored at
the starting address of each block.

3) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 8050H
onward. Write a program to insert an element stored at memory location 804FH into the memory
location 8053H.

4) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 8050H
onward. Write a program to delete the element which is stored at memory location 8055H.

5) Write a program to store AAH and BBH alternately for 100 times starting from memory location
9000H. Also store the last address where BBH is stored into DE register pair.

6) Write a program to store first ten natural numbers consecutively from memory location 8050H.

Department of Electronics & Communication Engineering
8085 62

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

5. Programs on Searching and Sorting

5.1: Write a program to find the largest number from a list of ten 8-bit numbers which are stored
from the memory location 8050 onward and store the largest number in register D.

If there are N no. of 8-bit numbers in a data set, then (N — 1) no. of comparisons should be
performed taking two consecutive numbers at a time to find out the largest number. For each
comparison the larger one among the two numbers will be stored in a register and ultimately we
shall get the largest number saved inside that register after (N — 1) comparisons. Therefore nine
comparisons will be done in this program, because here we have to find out the largest number from
a set of ten numbers i.e. N = 10. During every comparison the larger one is to be stored inside
accumulator which will hold the largest number after the completion of nine comparisons finally.
For clear understanding, an example for determining the largest number from a set of six numbers

in this way is given pictorially in Fig-5.1 below.

STAGE 1
8050 7F
8051 8D
8052 30
8053 8D
B054 AR
8055 EF

STAGE 6

After 5th Comparison

8050 7F
8051 8D
8052 30
8053 8D
B054 AR
8055 EF

STAGE 2

After 1st Comparison

BO51
G052
6053

5054
BO55

G050

B051
6052
B053

8054
A= EFI:LargESt] BOSS

7F

BD

30

BD

An

EF

STAGE S
After 4th Comparison

7F

8D

30

8D

AA

EF

A=8D

STAGE 3
After 2nd Comparison
8050 7F
8051 6D
8052 30 A=8D
B053 &6D
5054 AA
G055 EF
STAGE 4
After 3rd Comparison
050 7F
8051 8D
B052 30
8053 8D A=8D
6054 AR
8055 EF

Fig-5.1: Sequences to find out the largest number from a set of six numbers

It is being seen from the above figure that the largest number (EF) is stored inside register A
ultimately. The flowchart of the above mentioned program is given in Fig-5.2 below.

8085

Department of Electronics & Communication Engineering

63

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

START

Register C which is used asa
counter to iterate the loop 9 times. is
loaded with 09H

:

Initialize the HL register pair with
the addrezs where the first number
is stored

s

Copy the content of the memory
location pointed by HL register pair
(first number) into the accumulator

I '

Increment the HL register pair by g Recmmod he comeniol e

one o point the next address where regisiar © by one
the next number is stored

|

Two numbers stored in two Mo
consecutive addresses are
compared

Content of Accumulator = Number 2 7
[(Mumber 1)

Copy Number2 into the accumulator

b

~

RegisterC =07

Copy the content of accumulator
into register D

Fig-5.2: Flowchart of finding the largest number from a set of ten numbers

Department of Electronics & Communication Engineering
8085

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Assembly Language Program 5.1:

SL. | Addresses Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI C,09 0E | 09 2 7
2 8002 LXI H,8050 21 | 50 | 80 3 10
3 8005 MOV AM 7E 1 7
4 8006 LOOP |INXH 23 1 6
5 8007 CMPM BE 1 7
6 8008 JINCSMALL | D2 | 0C | 80 3 10 (True) / 7
(False)
7 800B MOV AM 7E 1 7
800C SMALL |DCRC 0D 1 4
9 800D INZ LOOP C2 | 06 | 80 3 10 (True) /7
(False)
10 8010 MOV D,A 57 1 4
11 8011 HLT 76 1 5
TOTAL =18

Result of Program 5.1:

SETI »

Input Output
Mem. Address |Content |Remarks D — DD (Largest No.)
8050 05 Nol
8051 0D No2
8052 DD No3
8053 AA No4
8054 12 No5
8055 32 Nob6
8056 71 No7
8057 0A No8
8058 8F No9
8059 0A Nol0

Department of Electronics & Communication Engineering
8085 65

5.2: Write a program to find the largest and the smallest number from a list of ten 8-bit numbers
which are stored from the memory location 8050 onward and store the largest and the smallest
numbers in register D and E respectively.

This program is a combination of Program 1 (To find the largest number) and Program 2 (To find
the smallest number) where the largest and the smallest both numbers are determined
simultaneously in a single program and stored inside the registers D and E respectively. Once the
previous two programs are clearly understood, then it will be easy to understand this program.
Therefore only the flowchart is sufficient to clarify the concept behind this program here. The
flowchart of this program is given in Fig-5.3.

In this program two comparisons between two numbers are done consecutively, one for checking
the larger number which will be stored in D register always and another for checking the smaller
number which will be saved in E register always. Thus we get the largest number inside D register
and the smallest number inside E register after the completion of the execution of the program.

Department of Electronics & Communication Engineering
8085 66

College of Engineering and Management, Kolaghat.

CH 5: Programs on Searching and Sorting

Fig-5.3: Flowchart of finding the largest and the smallest numbers from a set of ten numbers

.| Copy the content of register D into

“smar)

Register C which is used as a
counter to iterate the loop 9 times, is
loaded with 09H

¥

Initialize the HL register pair with
the address where the first number
is stored

Copy the content of the memory
location pointed by HL register pair
{first number) into register D and
register E

'

Increment the HL register pair by

A

one to point the next address where
the next number is stored

¥

Copy the content of register D info
accumulator for comparison

|

Two numbers stored in two
consecutive addresses are
compared

Content of Accumulator = Number 2 ?
(Number 1)

Copy Number2 into D register

l

(Number 1)

Caontent of Accumulator < Mumber 2 ?

Copy Number2 into register E

|

Decrement the content of the

register C by ane

No

accumulator for comparison

Assembly Language Program 5.2:

Register C =07

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 MVI C,09 OE | 09 2
2 8002 LXI H,8050 21 | 50 | 80 3
3 8005 MOV DM 56 1
4 8006 MOV E.D 5A 1

Department of Electronics & Communication Engineering

8085

67

CH 5: Programs on Searching and Sorting

College of Engineering and Management, Kolaghat.

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
5 8007 LOOP |INXH 23 1 6
6 8008 MOV A,D TA 1 4
7 8009 CMPM BE 1 7
8 800A JNC SMALL D2 | OE | 80 3 10 (True) / 7
(False)
9 800D MOV DM 56 1 7
10 800E SMALL |[MOV AE 7B 1 4
11 800F CMPM BE 1 7
12 8010 JC LARGE DA | 14 | 80 3 10 (True) / 7
(False)
13 8013 MOV EM SE 1 7
14 8014 LARGE |DCR C 0D 1 4
15 8015 JINZ LOOP C2 |07 | 80 3 10 (True) / 7
(False)
16 8018 HLT 76 1 5
TOTAL =25
Result of Program 5.2:
SETI »
Input Output
Mem. Address |Content |Remarks D — DD (Largest No.)
5050 05 Nol E — 05 (Smallest No.)
8051 0D No2
8052 DD No3
8053 AA No4
8054 12 No5
8055 32 Nob6
8056 71 No7
8057 0A No8
8058 8F No9
8059 0A Nol0

Department of Electronics & Communication Engineering

8085

68

5.3: Write a program to arrange a set of ten 8-bit numbers stored from the memory location 8050
onward in ascending order.

It is a program of sorting and in this case, the Bubble sort technique is used to arrange the numbers.
In the scheme of Bubble sort, there will be (N — 1) no. of passes for N no. of 8-bit numbers and
number of comparisons done between two consecutive numbers decreases by one for every pass.
Comparisons among the two successive numbers are always started from the first number
corresponding to all passes. If there are five numbers, for 1* pass there will be four comparisons, for
2" pass there will be three comparisons, for 3™ pass two comparisons and for 4" pass single
comparisons will be done. In each comparison, if first number is greater than the second one, they
are interchanged i.e. the first number goes in the position of second number and the second number
comes in the position of the first number. In this way the largest number will occupy the last
position after the completion of 1* pass. Similarly the second largest number will be placed at the
last but one position after the completion of 2™ pass. If this process continues, we get completely
sorted numbers in ascending order after the completion of all the passes. Now it is necessary to take
an example to sort five numbers in ascending order for better clarification shown in Fig-5..4.

Department of Electronics & Communication Engineering
8085 69

.J’I §

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

&050
8051
&052
8053
G054

8050
G051
&052
8053
G054

8050
&051
052
8053
G054

8050
&051
8052
G053
&054

050
&051
&052
G053
G054

050
&051
@052
G053
054

FF 8050 AF
Compare 1 T~ Swapped
AF FF>AF 8051 FF o i
05 8052 05
3z 8053 32
cD 8054 cb
AF 8050 AF
FF_ ™~ compare2 8051 05 :>
05 FF>05 8052 FF Swapped
3z 8053 32
cD 8054 cb
AF 8050 AF
05 8051 05
FF Compare3 8052 32 :>
Swapped
32 FF=32 8053 FF P
cD 8054 cD
AF 8050 AF
05 8051 05
32 8052 32
FF_ " Compare4 8053 ch :>
Swapped
co FF>CD 8054 == 5
PASS1
05 Compare 1 8050 05
32 |& 0532 8051 AF
AF 8052 32
cD 8053 cD
FF 8054 FF
05 8050 05
3z Compare2 8051 a2
AF 32 < AF 8052 AF
cD 8053 cD
FF 8054 FF
PASS3

:> Swapped

:> Swapped

j
.

| 8050 AF Compare 1 8050 05

i 8051 05 AF > 05 8051 AF

! 8052 32 8052 3z

|

| 8053 cD 8053 cD

! 8054 FF 8054 FF

|

|

|

| 8050 05 8050 05

| 8051 AF Compare2 8051 32
i 8052 32 AF > 32 8052 AF

| 8053 cD 8053 cD

| 8054 FF 8054 FF

|

| b

i 8050 05 8050 05

| 8051 32 8051 32

| 8052 AF [®__ Compare3 8052 AF

| 8053 CD |« AF<CD 5053 cD
| 8054 FF 8054 FF

!

!

|

!

|

|

PASS2

!

.

| 8050 05 Compare 1 8050 05
| 8051 32 |l& 05<32 8051 AF
: 8052 AF 8052 32
i 8053 cD 8053 cD
|

; 6054 FF 8054 FF
:

!

:

!

:

!

.

!

!

!

|

|

| PASS4

|

Fig-5.4: Sequences to find out the largest number from a set of six numbers

Department of Electronics & Communication Engineering

8085

70

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

The flowchart of this program is shown in Fig-5.5 below.

Register C which isused as a
counter to count no. of pass, is
loaded with 09H

8

Copy the content of register C into
register D (counter to count no. of
comparisons) o make them equal

Content of Accumulator = Number 2 7
(Number 1)

h 4

Initialize the HL register pair with "
: Interchange the positions of
the address where the first number
e torei] Number1 anf Mumber2
Decrement the content of the

4

register D by one

Copy the content of the address
pointed by HL register pair (first
number) into accumulator

!

Increment the HL register pair by
ane to point the next address where
the second number is stored

.

Compare the content of
accumulator with the content of the Decrement the content of the

address pointed by HL register pair register C by one

[

Mo

RegisterD =07

Mo)
RegisterC =07

Fig-5.5: Flowchart of Bubble sort to arrange ten numbers in ascending order

Department of Electronics & Communication Engineering
8085

71

HEERIN,
\\é;"'.-_ .
S

CH 5: Programs on Searching and Sorting

&% College of Engineering and Management, Kolaghat.

Assembly Language Program 5.3:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States

1 8000 MVI C,09 0E | 09 2 7

2 8002 LOOP1 MOV D,C 51 1 4

3 8003 LXI H,8050 21 | 50 | 80 3 10

4 8006 LOOP2 1 MOV AM 7E 1 7

5 8007 INX H 23 1 6

6 8008 CMPM BE 1 7

7 8009 JC SKIP DA | 11 | 80 3 10 (True) /7
(False)

8 800C MOV BM 46 1 7

9 800D MOV M,A 77 1 7

10 800E DCX H 2B 1 6

11 800F MOV M,B 70 1 7

12 8010 INX H 23 1 6

13 8011 SKIP |DCR D 15 1 4

14 8012 INZ LOOP2 C2 | 06 | 80 3 10 (True) /7
(False)

15 8015 DCR C 0D 1 4

16 8016 JINZ LOOP1 C2 02| 80 3 10 (True) /7
(False)

17 8019 HLT 76 1 5

TOTAL =26

Department of Electronics & Communication Engineering

8085

72

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Result of Program 5.3:

SETI »
Input Output
Before Sorting After Sorting
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 05 8050 05
8051 0D 8051 0A
8052 DD 8052 0A
8053 AA 8053 0D
8054 12 8054 12
8055 32 8055 32
8056 71 8056 71
8057 0A 8057 8F
8058 8F 8058 AA
8059 0A 8059 DD

5.4: Suppose two sorted lists of ten and five numbers are stored starting from memory location
8060H onward and 8070H onward respectively. Write a program to merge these two sorted lists
into a separate list in such a way that the generated list also will be in sorted form and will be
stored from 8080H onward. Assume all the lists are sorted in ascending order in this program.

In this case 1% sorted list is stored from 8060H and 2™ sorted list is stored from 8070H. If the 1% and
2™ list consist of m and n no. of elements, the 3™ list after merging will consist (m + n) no. of
elements. Here one element from the 1* list and another element from the 2™ list will be compared
to each other. Between these two elements which one is smaller will be copied into the 3™ list. Thus
this procedure will continue until any one list becomes exhausted i.e. all the elements of any one list
are transferred to the 3™ list. After this, the remaining elements of the other list will be copied to 3™
list consecutively until it becomes exhausted. Finally the 3™ list of (m + n) elements thus formed
starting from memory location 8080H, becomes automatically sorted in ascending order. The above
mentioned procedure is explained pictorially as shown below with two lists of 5 and 2 elements
respectively.

Department of Electronics & Communication Engineering
8085 73

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Iteration 1:

1* Sorted List 2™ Sorted List 3" Sorted List
Address | Content Address Content Address Content
8060 |05 (Smaller) 8070 0A 8080 05
8061 0D 8071 32
8062 |DD
8063 DF
8064 |EE

Iteration 2.

1* Sorted List 3" Sorted List
Address | Content 2™ Sorted List Address Content
8060 05 Address Content 8080 05
8061 0D 8070 OA (Smaller) 8081 0A
8062 |DD 8071 32
8063 |DF
8064 |EE

Iteration 3.
3" Sorted List

1* Sorted List 2™ Sorted List Address Content
Address | Content Address Content 8080 05
8060 |05 8070 0A 8081 0A
8061 0D (Smaller) 8071 32 8082 0D
8062 |DD
8063 |DF
8064 |EE

Department of Electronics & Communication Engineering

8085

74

College of Engineering and Management, Kolaghat.

CH 5: Programs on Searching and Sorting

[teration 4:

1% Sorted List

3" Sorted List

Address Content
2™ Sorted List 8080 05
Address Content 8081 0A
8070 0A 8082 0D
8071 32 (Smaller) 8083 32

Address |Content
8060 05

8061 0D
8062 DD
8063 DF
8064 EE

Iteration 5:

2" Sorted List is exhausted

3" Sorted List

1* Sorted List
Address |Content
8060 05
8061 0D
8062 DD
8063 DF
8064 EE

Iteration 6:

1** Sorted List
Address |Content
8060 05
8061 0D
8062 DD
8063 DF
8064 EE

Address Content
2™ Sorted List 8080 05
Address Content 8081 0A
8070 0A 8082 0D
8071 32 8083 32
8084 DD
3" Sorted List
Address Content
2" Sorted List 8080 05
Address Content 8081 0A
8070 0A 8082 0D
8071 32 8083 32
8084 DD
8085 DF

Department of Electronics & Communication Engineering

8085

75

CH 5: Programs on Searching and Sorting

College of Engineering and Management, Kolaghat.

[teration 7:

1** Sorted List
Address |Content
8060 05
8061 0D
8062 DD
8063 DF
8064 EE

3" Sorted List

Address Content
2™ Sorted List 8080 05
Address Content 8081 0A
8070 0A 8082 0D
8071 32 8083 32
8084 DD
8085 DF
8086 EE

Note: Gray colored cells are indicating that they have already been transferred to destination
memory locations.

In this program register pair BC and HL acts as memory pointer of 1% sorted list and 2™ sorted list
respectively and DE register pair is the memory pointer of 3™ merged list. Three memory locations
(805FH, 806FH and 807FH) will be used as counters of 1%, 2" and 3™ list respectively. After every
comparison the smaller element will be added to the 3™ list and the memory pointer DE of 3™ list
along with any one memory pointer (either BC or HL register pair) will be incremented by 1 to get
access of the next memory location. This process will be repeated until any one counter of 1* or 2™
list becomes zero. As soon as the particular counter of one list becomes zero, the remaining
elements of the other list will be added to the 3™ list one by one. Thus a merged 3™ list whose all the
elements are arranged in ascending order is formed ultimately.

Assembly Language Program 5.4:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI B,8060 01 | 60 | 80 3 10
2 8003 LXI H,8070 21 | 70 | 80 3 10
3 8006 LXI D,8080 11 | 80 | 80 3 10
4 8009 MVI A,0A 3E | 0A 2 7
5 800B STA 805F 32 | 5F | 80 3 13
6 800E MVI A,05 3E | 05 2 7
7 8010 STA 806F 32 | 6F | 80 3 13
8 8013 MVI A,0F 3E | OF 2 7
9 8015 STA 807F 32 | 7F | 80 3 13

Department of Electronics & Communication Engineering

8085

76

HEERIN,
\\é;"'.-_ .
S

CH 5: Programs on Searching and Sorting

&% College of Engineering and Management, Kolaghat.

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
10 8018 REPEAT |LDA 805F 3A | 5F | 80 3 13
11 801B CPI100 FE | 00 2 7
12 801D JZ L1 CA | 3B | 80 3 10/7
13 8020 LDA 806F 3A | 6F | 80 3 13
14 8023 CP100 FE | 00 2 7
15 8025 JZ 1.2 CA | 2D | 80 3 10/7
16 8028 LDAX B 0A 1 7
17 8029 CMP M BE 1 7
18 802A JINC LI D2 3B | 80 3 10/7
19 802D L2 LDAX B 0A 1 7
20 802E STAX D 12 1 7
21 802F INX B 03 1 6
22 8030 INXD 13 1 6
23 8031 LDA 805F 3A | 5F | 80 3 13
24 8034 DCR A 3D 1 4
25 8035 STA 805F 32 | 5F | 80 3 13
26 8038 JMP END C3 | 46 | 80 3 10
27 803B L1 MOV AM 7E 1 7
28 803C STAX D 12 1 7
29 803D INX H 23 1 6
30 803E INXD 13 1 6
31 803F LDA 806F 3A | 6F | 80 3 13
32 8042 DCR A 3D 1 4
33 8043 STA 806F 32 | 6F | 80 3 13
34 8046 END |LDA 807F 3A | 7F | 80 3 13
35 8049 DCR A 3D 1 4
36 804A STA 807F 32 | 7F | 80 3 13
37 804D JINZ REPEAT C2)| 18 | 80 3 10/7
38 8050 HLT 76 1 5

TOTAL =81

Department of Electronics & Communication Engineering

8085

77

College of Engineering and Management, Kolaghat.
CH 5: Programs on Searching and Sorting

Result of Program 5.4:
SETI »
Input Output
1™ Sorted List 2" Sorted List 3" Sorted List
Address | Content Address Content Address Content
8060 05 8070 0A 8080 05
8060 0D 8071 IF 8081 0A
8062 AS 8072 32 8082 0D
8063 AA 8073 A9 8083 IF
8064 AF 8074 B9 8084 32
8065 B1 8085 A5
8066 CcC 8086 A9
8067 D6 8087 AA
8068 DA 8088 AF
8069 DD 8089 Bl
808A B9
808B cC
808C D6
808D DA
808E DD
Exercise

1) Write a program to find the smallest number from a list of sixteen 8-bit numbers which are stored from the
memory location 8050 onward and store the smallest number in register E.

2) Write a program to arrange a set of ten 8-bit numbers stored from the memory location 8050 onward in
descending order using bubble sort.

3) Write a program to determine the number of times FF present in a set of 20 8-bit numbers which are
stored from memory location 9000H.

4) Write a program to count the number of times 55H repeated in a set of 20 numbers stored consecutively
starting from 8060 onward. Store the count value at the memory location 805FH.

5) Suppose two sorted lists of eight and five numbers are stored in ascending order starting from memory
location 9000H onward and 9020H onward respectively. Write a program to merge these two sorted lists
into a separate list in such a way that the generated list will be in descending order and will be stored
from 9050H onward.

Department of Electronics & Communication Engineering
8085 78

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6. Programs on Data Conversion

6.1: Write a program to convert a 2-digit packed BCD number stored at memory location 8050H
to unpacked BCD numbers which will be stored at memory locations 8051H and 8052H.

We know that a 2-digit packed BCD number is 8 bits long where lower 4 bits (lower nibble) forms
LSD (Least significant digit) and upper 4 bits (upper nibble) forms MSD (Most significant digit).
Now these two digits should be separated to form two unpacked BCD numbers. For example — 52 is
a packed BCD and the corresponding unpacked BCD numbers are 05 and 02.

Now to extract out the LSD the packed BCD should be AND operated with OFH. On the contrary
the MSD will be separated after performing AND operation with FOH and the result of AND
operation has to be shifted right 4 times. How a packed BCD 52H will be converted to unpacked
BCDs are shown below.

2-digit packed BCD (52H) — 0 1 0 1 0 0 1 0
OFH— 0 0 0 0 1 1 1 1

Bitwise AND operation —
Unpacked BCD with LSD (02H) — 0 0 0 0 0 0 1 0

2-digit packed BCD (52H) — 0 1 0 1 0 0 1 0
FOH—-> 1
Bitwise AND operation —

—_
—_
—_
)
()
o
)

Result of AND operation (S0H) — 0 1 0 1 0 0 0 0
After 1* right shift > 0 0 1 0 1 0 0 0

After 2" right shift —» 0 0 0 1 0 1 0 0

After 3" right shift —» 0 0 0 0 1 0 1 0

Unpacked BCD with MSD (05H) —» 0 0 0 0 0 1 0 1

(After 4™ right shift)

Department of Electronics & Communication Engineering
8085 79

College of Engineering and Management, Kolaghat.

CH 6: Programs on Data Conversion

Assembly Language Program 6.1:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 MOV B,A 47 1 4
4 8005 ANI OF E6 | OF 2 7
5 8007 INX H 23 1 6
6 8008 MOV M,A 77 1 7
7 8009 MOV A,B 78 1 4
8 800A ANI FO E6 | FO 2 7
9 800C RRC OF 1 4
10 800D RRC OF 1 4
11 800E RRC OF 1 4
12 800F RRC OF 1 4
13 8010 INX H 23 1 6
14 8011 MOV M,A 77 1 7
15 8012 HLT 76 1 5
TOTAL =19
Result of Program 6.1:
SETI »
Input Output
Mem. Address |Content |Remarks Address |Content | Remarks
8050 52 2 digit packed BCD ||8051 02 Unpacked BCD with LSD
8052 05 Unpacked BCD with MSD
f_flﬁ > Output
Mem. Address |Content |Remarks Address | Content | Remarks
2050 94 2 digit packed BCD 8051 04 Unpacked BCD with LSD
8052 09 Unpacked BCD with MSD

Department of Electronics & Communication Engineering

8085

80

EERIY,

7 ‘% College of Engineering and Management, Kolaghat.

= CH 6: Programs on Data Conversion

6.2: Write a program to convert two unpacked BCD numbers stored at memory locations 9050H
and 9051H to a two digits packed BCD number which will be stored at memory locations 9052H.
Assume that the memory locations 9050H and 9051H is holding the unpacked BCD containing
MSD and the unpacked BCD containing LSD respectively.

In this program two unpacked BCD numbers — one containing LSD and other containing MSD are
joined together to a two digits packed BCD numbers. To do this the unpacked BCD consisting of
MSD are shifted left for four times and then it will be OR-operated with the unpacked BCD
consisting of LSD to construct the packed BCD number. Two unpacked BCD numbers 04 (LSD)
and 08 (MSD) are converted to 2-digit packed BCD using the following technique as shown below.

B, B¢ Bs Bs By B, Bi By

Unpacked BCD containing MSD (08H) — 0 0 0 0 1 0 0 0
After 1% left shift » 0 0 0 1 0 0 0 0

After 2" left shift —» 0 0 1 0 0 0 0 0

After 3" left shift —» 0 1 0 0 0 0 0 0

After 4™ left shift —» 1 0 0 0 0 0 0 0

Unpacked BCD containing LSD (04H) — 0 0 0 0 0 1 0 0

Bitwise OR operation —
2-digit Packed BCD (84H) —» 1 0 0 0 0 1 0 0

Assembly Language Program 6.2:

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,9050 21 | 50 | 90 3 10
2 8003 MOV AM 7E 1 7
3 8004 RLC 07 1 4
4 8005 RLC 07 1 4
5 8006 RLC 07 1 4
6 8007 RLC 07 1 4
7 8008 INX H 23 1 6
8 8009 ORAM B6 1 7
9 800A INX H 23 1 6
10 800B MOV M,A 77 1 7
11 800C HLT 76 1 5

TOTAL =13

Department of Electronics & Communication Engineering
8085 81

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.2:

SETI »
Input Output
Address| Content | Remarks Address Content |Remarks
9050 |08 Unpacked BCD containing MSD 9052 84 Packed BCD
9051 04 Unpacked BCD containing LSD
SET2 » Output
Input Lutput
A R k

ddress| Content | Remarks — Address Content |Remarks
9050 |06 Unpacked BCD containing MSD 9052 69 Packed BCD
9051 09 Unpacked BCD containing LSD

6.3: Write a program to convert a 2-digit packed BCD number stored at memory location 8050H
to its equivalent Hexadecimal number and store the converted Hexadecimal number into
memory location 8051H.

Method 1: The two digit BCD number is converted to two unpacked BCD numbers first. For
example if the packed BCD number is 25, the unpacked BCD numbers will be 02 and 05
respectively, where 02 is MSD (Most significant digit) and 05 is LSD (Least significant digit). Here
basically the two digits are separated and LSD is added with 10 times of MSD to get the equivalent
Hexadecimal number. Therefore Hexadecimal number = 10 x MSD + LSD.

In this program 10 x MSD is stored in register D and LSD is stored in register C. Finally register D
and register C are added together to get the Hexadecimal number. Basically 10 x MSD = 8 x MSD
+ 2 x MSD. If a number is shifted left 3 times, it will be multiplied with 8 and if a number is shifted
left 1 time, it will be multiplied with 2. Here initially MSD is in the upper nibble and the lower
nibble is zero. If it is shifted right 1 time, it is equivalent to shifting left 3 times for getting 8 x MSD
and if it is shifted right 3 times to get 2 x MSD. Here the number masked with FOH is shifted right
one time to get 8 x MSD and shifted right 3 times to get 2 x MSD. Let’s take an example.

The packed BCD number = 25

Masked with OF = 05 and masked with FO =20 = 0010 0000
After shifted right 1 time = 0001 0000 =16 =8 x 2

After shifted right 3 times = 0000 0100 =4 =2 x 2

Now 10 x2=8x2+2x2

Therefore equivalent HEX number = 10 x 2 + 05

Department of Electronics & Communication Engineering
8085 82

HEERIN,
\\é;"'.-_ .
S

CH 6: Programs on Data Conversion

&% College of Engineering and Management, Kolaghat.

Assembly Language Program 6.3 (Method 1):

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 MOV B,A 47 1 4
4 8005 ANI OF E6 | OF 2 7
5 8007 MOV C,A 4F 1 4
6 8008 MOV A,B 78 1 4
7 8009 ANI FO E6 | FO 2 7
8 800B RRC OF 1 4
9 800C MOV D,A 57 1 4
10 800D RRC OF 1 4
11 800E RRC OF 1 4
12 800F ADD D 82 1 4
13 8010 ADD C 81 1 4
14 8011 INX H 23 1 6
15 8012 MOV M,A 77 1 7
16 8013 HLT 76 1 5

TOTAL =20

Method 2: In this alternate method the equivalent Hexadecimal number is achieved in the same
way, only the difference in the technique to get 10 x MSD. Here packed BCD number is unpacked
first to store MSD and LSD into two separate registers. Suppose register A is holding MSD. Now A
is added with itself to hold 2 x MSD, then A is added with itself once again to store 4 x MSD and
finally A is added with itself to get 8 x MSD. Now 8 x MSD + 2 x MSD is performed to have 10 X
MSD which is ultimately added with LSD to get the equivalent Hexadecimal number.

Assembly Language Program 6.3(Method 2):

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1
8004 MOV B,A 47 1 4

Department of Electronics & Communication Engineering

8085

83

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

SL. | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
4 8005 ANI OF E6 | OF 2 7
5 8007 MOV C,A 4F 1 4
6 8008 MOV A,B 78 1 4
7 8009 ANI FO E6 | FO 2 7
8 800B RRC OF 1 4
9 800C RRC OF 1 4
10 800D RRC OF 1 4
11 800E RRC OF 1 4
12 800F ADD A 87 1 4
13 8010 MOV D,A 57 1 4
14 8011 ADD A 87 1 4
15 8012 ADD A 87 1 4
16 8013 ADD D 82 1 4
17 8014 ADD C 81 1 4
18 8015 INXH 23 1 6
19 8016 MOV M,A 77 1 7
20 8017 HLT 76 1 5
TOTAL =24
Result of Program 6.3:
SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 91 2 digit packed BCD | [8051 5B Equivalent Hex No.
SET2 »
Input Output
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 15 2 digit packed BCD | |8051 OF Equivalent Hex No.

Department of Electronics & Communication Engineering

8085

84

EERIY,

7 ‘% College of Engineering and Management, Kolaghat.

= CH 6: Programs on Data Conversion

6.4: Write a program to convert an 8-bit Hexadecimal number stored at memory location 8050H
to unpacked BCDs which will be stored starting from memory location 8051H.

Method 1: In this case the Hexadecimal number is converted to unpacked BCDs i.e. three digits are
separated and saved into three different memory locations. For example — if the Hexadecimal
number i1s FEH (254 in Decimal), then three unpacked BCD digits 02, 05 and 04 will be stored into
three consecutive memory locations. For this purpose the Hexadecimal number is divided by 100
(64 in HEX) first, where quotient gives the 1* unpacked BCD. The remainder is again divided by 10
(0A in HEX) to get 2™ unpacked BCD in the quotient and 3™ unpacked BCD in the remainder.
These three unpacked BCDs are stored consecutively in the memory locations starting from 8051.

Assembly Language Program 6.4(Method 1):

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 MVI B,64 06 | 64 2 7
4 8006 CALLHEX2BCD |CD | 11 | 80 3 18
5 8009 MVI B,0A 06 | 0A 2 7
6 800B CALL HEX2BCD [CD | 11 | 80 3 18
7 800E INX H 23 1 6
8 800F MOV M,A 77 1 7
9 8010 HLT 76 1 5
10 8011 HEX2BCD |INX H 23 1 6
11 8012 MVI M,FF 36 | FF 2 10
12 8014 LOOP |INRM 34 1 10
13 8015 SUB B 90 1 4
14 8016 JNC LOOP D2 | 14 | 80 3 10
15 8019 ADD B 80 1 4
16 | 801A RET C9 1 10

TOTAL= 27

Department of Electronics & Communication Engineering
8085 85

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Result of Program 6.4 (Method 1):

SETI »

Input Output

Mem. Address |Content |Remarks Mem. Address |Content |Remarks

8050 FD 2 digit Hex No. 8051 02 Unpacked BCD1
8052 05 Unpacked BCD2

Hex No. = FD Equivalent Decimal No. =253
8053 03 Unpacked BCD3

SET2 »

Input Output

Mem. Address |Content |Remarks Mem. Address |Content |Remarks

8050 El 2 digit Hex No. 8051 02 Unpacked BCD1
8052 02 Unpacked BCD2

Hex No. = E1 Equivalent Decimal No. =225 2053 05 Unpacked BCD3

Method 2: In this method the Hexadecimal number is converted to packed BCD number using
DAA instruction. That means, if the Hexadecimal number is AFH (175 in Decimal), after
conversion we have two packed BCD numbers, one is 01 and other is 75 which will be stored
successively into two memory locations 8051H and 8052H. We know DAA converts the result of
two BCD addition into BCD. In 8085 all the numbers are represented in Hexadecimal form i.e. if
we want to represent BCD number, it is basically a HEX number. For example BCD number 15 is
basically a Hexadecimal number whose value is 21 and BCD number 18 is another Hexadecimal
number with value 24. If we add them, then we get the following results.

BCD Addition We get the following
15 15
18 18
33 2D

Desired Result Wrong Result

From the above example it is clear that the result of the BCD addition may be incorrect. DAA
instruction rectifies this error and generate the correct result in BCD. In the above example if DAA
is used after the addition, it will give 33 as a result. In this program if a Hexadecimal number is n, it
will be converted to the corresponding BCD number by initializing accumulator with 00H, adding 1
with itself n times and using DAA after every addition. Thus the accumulator will hold the packed
BCD number finally. Here one thing is important to mention that DAA instruction is used after
ADD instruction normally.

Department of Electronics & Communication Engineering
8085 86

CH 6: Programs on Data Conversion

College of Engineering and Management, Kolaghat.

Assembly Language Program 6.4(Method 2):

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV CM 4E 1 7
3 8004 MVI B,00 06 | 00 2 7
4 8006 XRAA AF 1 4
5 8007 LOOP |ADIOI C6 | 01 2 7
6 8009 DAA 27 1 4
7 800A JNC SKIP D2 | OE | 80 3 10
8 800D INR B 04 1
9 800E SKIP |DCRC 0D 1 4
10 800F JINZ LOOP C2 07 | 80 3 10
11 8012 INX H 23 1 6
12 8013 MOV M,B 70 1 7
13 8014 INX H 23 1 6
14 8015 MOV M,A 77 1 7
15 8016 HLT 76 1 5
TOTAL=23
Result of Program 6.4 (Method 2):
SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 FD 2 digit Hex No. 8051 02 Higher Byte of BCD
Hex No. = FD Equivalent Decimal No. = 253 8052 53 Lower Byte of BCD
Tt Output
Mem. Address |Content |Remarks Mem. Address | Content |Remarks
2050 £l 2 digit Hex No. 8051 02 Higher Byte of BCD
Hex No. = E1 Equivalent Decimal No. =225 8052 25 Lower Byte of BCD

Department of Electronics & Communication Engineering

8085

87

6.5: Write a program to add two BCD numbers stored at memory locations 8050H and 8051H
respectively. Store the result of the BCD addition at memory locations 8052H and 8053H

respectively.

The concept of BCD addition has been already discussed in Program 6.2 Method 2. How the DAA
instruction is used after addition to generate correct result is also explained. Therefore this program
is self-explanatory.

Assembly Language Program 6.5:

SL | Addresses Label Mnemonics Hex Codes No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 INX H 23 1 6
4 8005 MVI B,00 06 | 00 2 7
5 8007 ADDM 86 1 7
8 8008 DAA 27 1 4
9 8009 JNC SKIP D2 | OD | 80 3 10
10 800C INR B 04 1 4
11 800D SKIP INX H 23 1 6
12 800E MOV M,B 70 1 7
13 800F INX H 23 1 6
14 8010 MOV M,A 77 1 7
15 8011 HLT 76 1 5

TOTAL= 18
Result of Programé.5:
Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 34 2 digit BCD Nol 8052 01 Higher Byte of Result

8051 74 2 digit BCD No2 8053 08 Lower Byte of Result

Note: This program will not run properly in Jubin's 8085 simulator due to wrong implementation of

DAA instruction. In simulator if CY flag is already set before the execution of DAA, DAA clears CY
flag, which happens for BCD addition between 98 and 97. This program will run perfectly in 8085

Trainer Kit.

Department of Electronics & Communication Engineering

8085

88

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

6.6: Write a program to convert a Hexadecimal number to its equivalent ASCII numbers. Store
the Hexadecimal number at 8060H and corresponding ASCII numbers at 8061 and 8062
respectively.

A single digit Hexadecimal number is represented by any digit from 0 to 9 and any alphabet from A
to F. Here the two digit Hexadecimal number is divided into two single digit Hexadecimal number
by masking the upper nibble and lower nibble. Now each single digit Hexadecimal number will be
converted to its equivalent ASCII numbers. The ASCII values of 0 to 9 and A to F are given below.

Hexadecimal Number ASCII Value
0 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
41H
42H
43H
44H
45H
46H

Him|g|lalw(»|lo|lo|lalajnu|b|w|N|—

From the ASCII chart it is clear that if Hexadecimal number lies between 0 to 9, 30H should be
added with the Hexadecimal number and if Hexadecimal number lies between A to F, then 37H
should be added with it to get the corresponding ASCII value.

Department of Electronics & Communication Engineering
8085 89

&=
S/,

Efiy,

"’% College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.6:

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H, 8060 21 | 60 | 80 3 10
2 8003 MOV B.M 46 1
3 8004 MOV A,B 78 1 4
4 8005 ANI OF E6 | OF 2 7
5 8007 CALL HEX2ASC |CD | 19 | 80 3 18
6 800A INX H 23 1 6
7 800B MOV M,A 77 1 7
8 800C MOV A,B 78 1 4
9 800D ANI FO E6 | FO 2 7
10 800F RRC OF 1 4
11 8010 RRC OF 1 4
12 8011 RRC OF 1 4
13 8012 RRC OF 1 4
14 8013 CALL HEX2ASC [CD | 19 | 80 3 18
15 8016 INX H 23 1 6
16 8017 MOV M,A 77 1 7
17 8018 HLT 76 1 5
18 8019 | HEX2ASC CPI0OA FE | OA 2 7
19| 801B JC SKIP DA | 20 | 80 3 10/7

20 801E ADI 07 C6 | 07 2 7

21 8020 SKIP |ADI30 C6 | 30 2 7

22 8022 RET C9 1 10

TOTAL=35

Department of Electronics & Communication Engineering

8085

90

College of Engineering and Management, Kolaghat.

CH 6: Programs on Data Conversion

Result of Program 6.6:

SETI »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
8060 SF 2 digit Hex No. 8061 35 ASCII Value of 5
8062 46 ASCII Value of F
SET2 »
Input Output
Mem. Address |Content |Remarks Address | Content | Remarks
. 1 41 ASCII Val fA
8060 A0 2 digit Hex No. 806 SCII Value o
8062 30 ASCII Value of 0

6.7: Write a program to convert an 8-bit Hexadecimal number stored at memory location 8050H
to its equivalent gray code which will be stored at memory location 8051H.

To determine the corresponding gray code of a binary number the rule is to take the MSB of the

binary number unchanged and all the other bits of the gray code is achieved by performing EXOR
operation between two consecutive bits of the binary number. If an 8-bit binary number is
represented as B;BsBsB4B3;B,BB,, then the corresponding gray code can be determined as follows.

G;=0® B;=B;y
G6:B7 @ B6
G5:B6 @ B5
G4:B5 @ B4

The above mentioned process can be implemented by right shifting the binary number one bit

G3:B4 EB B3
G2:B3 69 B2
G1:B2 EB B1
Go:Bl 69 Bo

position, which appends a zero at the MSB position and then performing bit-wise XOR operation
between the actual binary number and the right shifted version of the binary number as shown

below.

Right shifted Binary Number — 0

Binary Number — By

Gray Code —» Gy

Bs Bs B. B; B> B, Bo
@ @ @ @ 5% ® @ @
B7 B6 B5 B4 B3 BZ Bl
G Gs Gy G Gy G Go

Department of Electronics & Communication Engineering

8085

91

College of Engineering and Management, Kolaghat.
CH 6: Programs on Data Conversion

Assembly Language Program 6.7:

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H, 8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 STC 37 1 4
4 8005 CMC 3F 1 4
5 8006 RAR IF 1 4
6 8007 XRAM AE 1 7
7 8008 INX H 23 1 6
8 8009 MOV M,A 77 1 7
9 800A HLT 76 1 5

TOTAL =11

Result of Program 6.7:

SETI »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 25 8-bit Hex Number 8051 37 8-bit Gray Code
SET2 »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 C2 8-bit Hex Number 8051 A3 8-bit Gray Code

Department of Electronics & Communication Engineering
8085 92

6.8: Write a program to convert an 8-bit gray code stored at memory location 8050H to its

equivalent hex code which will be stored at memory location 8051H.

Suppose an 8-bit gray code is denoted as G;GsGsG4G3G.G1Go. Now this gray code can be converted

to corresponding binary number using the following process.

B7:O®G7:G7 B3:B4@G3
B6:B7®G6:G7®G6 B2:B3®G2
B5:B6®G5 B1:B2@G1
B4:B5®G4 B0:B1®Go

The above expressions to convert gray to binary are shown pictorially in Fig-6.1 for 4-bit

representation.
Gray Code g3 gl gl gl
Biary Code D na b i
2 :—'-= MIEXNOR gl M2 EXOR gl) (b1 EX-OR ph)

Fig-6.1: Gray to binary conversion

It is being observed that any bit in the converted binary number depends on the previous binary bit.
Due to this reason Be binary bit can not be determined unless B, bit is calculated, Bsbit can only be
determined after the evaluation of B, bit and so on. In this program a loop is iterated for 7 times to

convert the gray code to binary as shown below.

Iteration 1:

Right shifted Gray code — 0 G, Gs Gs

Gray code — G7 G6 G5 G4 G3 Gz G1 G()

@ ® @ ® @ @ ® ®

Gy G G, G

Binary codel —>G7 = B7 B6 D5 D4 D3 Dz D1 D()
1 T T i T T T 1

Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid

Department of Electronics & Communication Engineering

8085

93

College of Engineering and Management, Kolaghat.

CH 6: Programs on Data Conversion

Iteration 2:

[teration 3:

Iteration 4:

Iteration 5:

Gray code — G7 G6 G5 G4 G3 Gz G1 Go
@ @ ® @ @ @ ® @
Right shifted Binary codel — 0 B, B¢ Ds Ds D3 D, D
Binary code2 —>G7 = B7 B6 B5 D4 D3 Dz D1 D()
T T T i T T T T
Valid Valid Valid Invalid Invalid Invalid Invalid Invalid
Gray code — G7 G6 G5 G4 G3 G2 G] Go
©® ©® ©® Y Y Y @ Y
Right shifted Binary code2 — 0 B, Bs Bs Ds Ds D, D
Binary code3 —>G7 = B7 B6 B5 B4 D3 D2 D| Do
1 7 7 1 1 1 1 1
Valid Valid Valid Valid Invalid Invalid Invalid Invalid
Gray code — G7 Gs G5 G4 G3 Gz G1 Go
@ @ @ @ @ @ ® @
nght shifted Binary code3 — 0 B7 B5 B5 B4 D3 Dz D1
Binary code4 —>G7 = B7 B6 B5 B4 B3 D2 D1 D()
T T T T T T T T
Valid Valid Valid Valid Valid Invalid Invalid Invalid
Gray code — G7 Ge G5 G4 G3 G2 G] G()
©® ® ® ® ® @ ® ©®
Right shifted Binary code4 — 0 B, B¢ Bs Bs By D, D
Binary code5s —>G7 = B7 B() B5 B4 B3 Bz D] D()
1 T 7 T 1 1 T 1
Valid Valid Valid Valid Valid Valid Invalid Invalid

Department of Electronics & Communication Engineering
8085

94

EERIY,

7 ‘% College of Engineering and Management, Kolaghat.

= CH 6: Programs on Data Conversion

Iteration 6:

Gray code — G7 Gs G5 G4 G3 Gz G1 Go
@ @ S @ @ @ @ @
Right shifted Binary code5 — 0 B, B¢ Bs Bs B; B, D

Binary code6b —>G7 = B7 B6 B5 B4 B3 Bz B1 D()

1 1 7 1 1 1 1 1
Valid Valid Valid Valid Valid Valid Valid Invalid

Iteration 7:

Gray code — G7 Gs G5 G4 G3 Gz G1 Go
@ @ @ @ @ @ @ @
nght shifted Binary code6 — 0 B7 B5 B5 B4 B3 B2 B1

Binary code?7 —>G7 = B7 B6 B5 B4 B3 Bz B1 Bo
T 1 T 1 T T T T
Valid Valid Valid Valid Valid Valid Valid Valid
It is being observed clearly that the Binary code7 thus achieved finally after 7" iteration is valid.

Assembly Language Program 6.8:

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H,8050 21 | 50 | 80 3 10
2 8003 MOV AM 7E 1 7
3 8004 MVI C,07 OE | 07 2 7
4 8006 LOOP |STC 37 1 4
5 8007 CMC 3F 1 4
6 8008 RAR IF 1 4
7 8009 XRAM AE 1 7
8 800A DCR C 0D 1 4
9 800B JNZ LOOP C2 | 06 | 80 3 10/7
10 800E INXH 23 1 6
11 800F MOV M,A 77 1 7
12 8010 HLT 76 1 5

TOTAL =17

Department of Electronics & Communication Engineering
8085 95

College of Engineering and Management, Kolaghat.

CH 6: Programs on Data Conversion

Result of Program 6.8:

SETI »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 37 8-bit Gray code 8051 25 8-bit hexadecimal number
SET2 »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 A3 8-bit Gray code 8051 C2 8-bit hexadecimal number

Exercise

1) Write a program to convert an ASCII character stored at 8050H to its equivalent Hexadecimal
number which should be placed at memory location 8051H.

2) Write a program to convert a 2-digit packed BCD number stored at 8050H to its equivalent
packed Excess 3 codes which should be placed at memory location 8051.

[Example: Packed 2-digit BCD: 92 — Packed 2-digit Excess 3 Code: C5]

3) Write a program to convert a 2-digit packed Excess 3 code stored at 8050H to its equivalent 2-
digit packed BCD number which should be placed at memory location 8051H.

Department of Electronics & Communication Engineering

8085

96

College of Engineering and Management, Kolaghat.
CH 7: Programs on Look up Table

7. Programs on Look up Table

7.1: Write a program to determine the square of a number which is stored at memory location
8050H using Look up Table. Also store the square value at memory location 8051H.

Although to determine the square of a number can be evaluated by multiplying the number with
itself, but the square of a number is determined by using look up table to develop the concept of the
look up table. Here a portion of the memory has been used to store the square of the numbers 00H
to OFH. We can not store the square of a number beyond OF (15 in Decimal), because it exceeds the
maximum range of a 8-bit number, FFH (255 in Decimal). In this program the look up table has
been started from the memory location 8060H onward as shown below.

Look up Table
Memory Address Square of 8-bit number
8060H 00H (0) «—square of 0
8061H 01H (1) «—square of 1
8062H 04H (4) «—square of 2
8063H 09H (9) «—square of 3
8064H 10H (16) «—square of 4
8065H 19H (25) «—square of 5
8066H 24H (36) «—square of 6
8067H 31H (49) «—square of 7
8068H 40H (64) «—square of 8
8069H 51H (81) «—square of 9
806AH 64H (100) «—square of 10
806BH 79H (121) «—square of 11
806CH 90H (144) «—square of 12
806DH A9H (169) «—square of 13
806EH C4 (196) «—square of 14
806FH E1H (225) «—square of 15

To get the square of a number, that particular number is added with the starting address of the look
up table to get the memory location where the square of that number is saved. Now the content of
that memory address is retrieved to get the square of the number.

Department of Electronics & Communication Engineering
8085 97

College of Engineering and Management, Kolaghat.

CH 7: Programs on Look up Table

Assembly Language Program 7.1:

SL | Addresses | Label Mnemonics Hex Codes | No. of Bytes| No. of T-States
1 8000 LDA 8050 3A | 50 | 80 3 13
2 8003 MOV LA 6F 1 4
3 8004 MVI H,00 26 | 00 2
4 8006 LXI D,8060 11 | 60 | 80 3 10
5 8009 DAD D 19 1 10
6 800A MOV AM 7E 1 7
7 800B STA 8051 32 | 51 | 80 3 13
8 800E HLT 76 1 5

TOTAL= 15

Result of Program 7.1:

SETI »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 03 8-bit No. 8051 09 Square of No. 3
SET2 »

Input Output

Mem. Address |Content |Remarks Address |Content |Remarks

8050 OF 8-bit No. 8051 El Square of No. F

Department of Electronics & Communication Engineering

8085

98

Exercise

1) Suppose a Common Cathode 7-segment display is connected to data bus of 8085 via a 74373

latch and the latch will be enabled with the port address FFH. The different pins of the 7-
segment display is connected to the data bus as follows.

Dy — a segment

D, — b segment

D, — ¢ segment

D; — d segment

D4 — e segment

Ds — fsegment

Ds — g segment

D; — h dot point

Now write a program to convert a single digit BCD number stored at memory location 8050H to
its equivalent 7 segment display code using look up table and send the 7-segment equivalent
code through data bus using port address FFH to show the BCD number on the 7-segment
display.

2) Suppose a Common Anode 7-segment display is connected to data bus of 8085 via a 74373 latch

and the latch will be enabled with the port address FFH. The different pins of the 7-segment
display is connected to the data bus as follows.

Dy — a segment

D, — b segment

D, — ¢ segment

Ds; — d segment

D4 — e segment

Ds — f segment

Ds — g segment

D7 — h dot point

Now write a program to convert a single digit BCD number stored at memory location 8050H to
its equivalent 7 segment display code using look up table and send the 7-segment equivalent
code through data bus using port address FFH to show the BCD number on the 7-segment
display.

3) Write a program to find out the factorial of a 8-bit number stored at memory location 8050 and

store the factorial at memory location 8051 using look up table.

Department of Electronics & Communication Engineering
8085 99

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8. Programs on String Manipulation

A string consists of some characters which may be alphabets or numbers. The characters of a string
are stored in consecutive memory locations. In 8085 a string is basically composed of a series of
hexadecimal numbers which are stored in successive memory locations. For example — a string
“66778090AABBCCDDEEFF” stored consecutively from memory location 9000H as shown
below.

Mem. Addres |Content
9000 66
9001 77
9002 80
9003 90
9004 AA
9005 BB
9006 CcC
9007 DD
9008 EE
9009 FF

Here the programs related to string manipulation will be explained.

Department of Electronics & Communication Engineering
8085 100

CH 8: Programs on String Manipulation

College of Engineering and Management, Kolaghat.

8.1: Suppose a string is stored from memory location 8050H to 8057H. Write a program to
reverse the string and store the reversed string starting from 8060H.

Suppose a string “0123456789ABCDEF” is stored from memory location 8050 to 8057 as shown in
Fig-8.1. After the execution of the program the string will be reversed and the reversed string
“FEDCBA9876543210” will be stored starting from 8060 onward as shown in Fig-8.2.

Mem. Address |Content
8050 01

8051 23

8052 45

8053 67
8054 89

8055 AB
8056 CD
8057 EF

Fig-8.1: Source string

Mem. Address Content
8060 FE
8061 DC
8062 BA
8063 98
8064 76

8065 54

8066 32

8067 10

Fig-8.2: Reversed string

Here every 8-bit data is to be copied starting from memory location 8057 to accumulator, swap the
nibbles of the accumulator by using RAL instruction and save the swapped data starting from
memory location 8060 onward. That means the source string should be copied from memory
location 8057 to 8050 and the reversed string should be stored from memory location 8060 to 8067.

Assembly Language Program 8.1:

SL | Addresses| Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
1 8000 LXI H,8057 21 | 57 | 80 3 10
2 8003 LXI D,8060 11 | 60 | 80 3 10
3 8006 MVI C,08 OE | 08 2 7
4 8008 LOOP |MOVAM 7E 1 7
5 8009 RLC 07 1 4
6 800A RLC 07 1 4
7 800B RLC 07 1 4
8 800C RLC 07 1 4

Department of Electronics & Communication Engineering

8085

101

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL | Addresses | Label Mnemonics Hex Codes | No. of Bytes | No. of T-States
9 800D STAX D 12 1 7

10 800E DCX H 2B 1 6

11 800F INX D 13 1 6

12 8010 DCR C 0D 1 4

13 8011 JINZ LOOP C2 | 06 | 80 3 10/7

14 8014 HLT 76 1 5

TOTAL=21

Result of Program 8.1:

SETI »

Input Output

Source String Reversed String

Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 01 8060 FE

8051 23 8061 DC

8052 45 8062 BA

8053 67 8063 98

8054 89 8064 76

8055 AB 8065 54

8056 CD 8066 32

8057 EF 8067 10

SET2 »

Input Output

Source String Reversed String

Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 1F 8060 88

8051 2E 8061 97

8052 3D 8062 A6

8053 4C 8063 B5

Department of Electronics & Communication Engineering
8085 102

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8054 5B 8064 Cc4
8055 6A 8065 D3
8056 79 8066 E2
8057 88 8067 F1

8.2: Suppose a string is stored from memory location 8050H to 8058H. Write a program to check
whether the string is palindrome or not. If the string is palindrome, 01H should be stored at
memory location 8059H, otherwise 00H should be stored in the same memory location.

A string is said to be palindrome when it matches exactly with its reversed form. For example — a
string “ABCDEF99FEDCBA” is palindrome, because if it is written in reverse order it will be the
same string “ABCDEF99FEDCBA”. Now for 8085 microprocessor a string always consists of even
no. of characters, because each memory location stores 8-bit data which includes two characters.
Hence for 8085 architecture it is not possible to store a string which comprises odd no. of
characters. Now the question arises how to check it. One thing is important to observe that every
pair of characters from starting position is just reverse of the pair of characters from end position. In
case of the above string “ABCDEF99FEDCBA” AB from starting positions is just reverse of BA
from end positions. Similarly CD is reversed of DC and EF is also reversed form of FE.

Here two cases arise — 1) no. of memory locations consumed by the string is even and 2) no. of
memory locations consumed by the string is odd. This implies that every pair of characters is
reversed and compared with its counterpart pair of characters up to n/2 for even no. of memory
locations and ([n/2]+1) for odd no. of memory locations where n is the no. of memory locations
consumed by the string. For examples - the string “ABCDEF99FEDCBA” takes 7 (odd)
consecutive memory locations. That’s why the checking has to be performed up to 4™ memory
location. At any stage if the reversed pair of characters does not match with its corresponding pair
of characters, the string will not be palindrome. If the reversed pair of characters matches with its
corresponding pair of characters up to n/2 or (|n/2|+1), the string will be a palindrome.
According to the condition of the program 01H will be stored at the memory location 8059H, if the
string is palindrome and 00H will be stored at 8059H if the string is not palindrome.

Department of Electronics & Communication Engineering
8085 103

&=
S/,

Efiy,

‘% College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Assembly Language Program 8.2:

SL | Addresses Label Mnemonics Hex Codes | No. of Bytes| No. of T-States
1 8000 LXI D,8050 11 | 50 | 80 3 10
2 8003 LXI H,8058 21 | 58 | 80 3 10
3 8006 MVI C,05 OE | 05 2 7
4 8008 LOOP |LDAXD 1A 1 7
5 8009 RLC 07 1 4
6 800A RLC 07 1 4
7 800B RLC 07 1 4
8 800C RLC 07 1 4
9 800D CMPM BE 1 7
10 800E JINZNOTPALIN | C2 | 1C | 80 3 10
11 8011 INX D 13 1 6
12 8012 DCXH 2B 1
13 8013 DCR C 0D 1
14 8014 JINZ LOOP C2 | 08 | 80 3 10
15 8017 XRAA AF 1
16 8018 INR A 3C 1
17 8019 JMP PALIN C3 | 1D | 80 3 10
18 801C | NOTPALIN XRAA AF 1 4
19 801D PALIN |STA 8059 32 | 59 | 80 3 13
20 8020 HLT 76 1 5

TOTAL= 33

Department of Electronics & Communication Engineering
8085

104

.

AR College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Result of Program 8.2:

SETI »
Input

Source String

Output

Mem. Address |Content |Remarks Mem. Address |Content |Remarks
8050 AB 8059 01 Palindrome
8051 CD
8052 EF
8053 12
8054 33
8055 21
8056 FE
8057 DC
8058 BA
- > Output
Source String
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
8050 AB 8059 00 Not Palindrome
8051 CD
8052 EF
8053 12
8054 34
8055 21
8056 FE
8057 DC
8058 BA

Department of Electronics & Communication Engineering

8085

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8.3: Suppose two strings are stored into two memory blocks - 8050H to 8059H and 8060H to
8065H respectively. Write a program to concatenate these two strings and store the concatenated
string starting from memory location 8050H onward.

As per the program objective 1% string of 20 characters is stored starting from memory location
8050H to 8059H and 2" string of 12 characters is stored from 8060H to 8065H. The target of this
program is to join or concatenate these two strings into one string. Therefore in this program the 2™
string is appended at the end of the 1* string to form a 3™ string of 32 characters (20 characters of 1*
string + 12 characters of 2™ string) which will occupy 16 no. of memory locations from 8050H to
805FH. To understand the above mentioned illustration let’s take an example.

Suppose “0123456789ABCDEF9988” is the 1* string which is stored into the memory locations
from 8050H to 8059H and “A1B2C3D4ES5F6” is the 2™ string which is stored into the memory
locations from 8060H to 8065H. After the execution of this program 1 and 2" string will be joined
together to form a 3™ string “ 0123456789 ABCDEF9988A1B2C3D4E5F6” which will be stored
from the memory location 8050H to the memory location 805FH as shown in Fig-8.3.

1* String 2™ String 3" Concatenated String
Address |Content Address | Content Address | Content
8050 01 8060 Al 8050 01
8051 23 8061 B2 8051 23
8052 45 8062 C3 8052 45
8053 67 8063 D4 8053 67
8054 89 8064 ES 8054 89
8055 AB 8065 F6 8055 AB
8056 CD 8056 CD
8057 EF 8057 EF
8058 99 8058 99
8059 88 8059 88

805A Al
805B B2
805C C3
805D D4
805E E5
805F F6

Fig-8.3: Two strings are concatenated to form a 3ud string

Department of Electronics & Communication Engineering
8085 106

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

Assembly Language Program 8.3:

SL | Addresses Label Mnemonics Hex Codes No. of Bytes | No. of T-States
1 8000 LXI H,8060 21 | 60 | 80 3 10
2 8003 LXI D,805A 11 | SA | 80 3 10
3 8006 MVI C,06 OE | 06 2 7
4 8008 LOOP MOV AM 7E 1 7
5 8009 STAX D 12 1 7
6 800A INX H 23 1 6
7 800B INXD 13 1 6
8 800C DCR C 0D 1 4
9 800D INZ LOOP C2 | 08 | 80 3 10/7
10 8010 HLT 76 1 5

Result of Program 8.3:

SETI » Input Output
1 String 2" String Concatenated 3" String
Address | Content Address | Content Address Content
8050 01 8060 Al 8050 01
8051 23 8061 B2 8051 23
8052 45 8062 C3 8052 45
8053 67 8063 D4 8053 67
8054 89 8064 E5 8054 89
8055 AB 8065 F6 8055 AB
8056 CD 8056 CD
8057 EF 8057 EF
8058 99 8058 99
8059 88 8059 88
805A Al
805B B2
805C C3
805D D4
805E E5
805F F6

Department of Electronics & Communication Engineering
8085 107

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 »
Input Output
1* String 2™ String Concatenated 3" String
Address |Content Address |Content Address Content
8050 11 8060 BB 8050 11
8051 22 8061 CcC 8051 22
8052 33 8062 DD 8052 33
8053 44 8063 EE 8053 44
8054 55 8064 FF 8054 55
8055 66 8065 32 8055 66
8056 77 8056 77
8057 88 8057 88
8058 99 8058 99
8059 AA 8059 AA
805A BB
805B CccC
805C DD
805D EE
805E FF
805F 32

8.4: Write a program to check whether a string stored from 8050 onward contains another sub-
string stored from 8060 onward or not. Store 01H into the memory location 8070H if the main
string contains the sub-string, otherwise store 02H into the memory location 8070H.

Here one string known as main string is stored from the memory location 8050H and another string
known as sub-string is stored starting from memory location 8060H. Obviously the length of the
sub-string will be less or equal to the length of the main string. Here four cases may happen.

Case 1: In this case no matching happens between the main string and sub-string. For example — if
the main string is “1234567890ABCDEF9988” and the sub-string is “2233445566”, it is observed
that there is no matching between the main string and the sub-string. Therefore 02H should be
stored into the memory location 8070H to indicate the mismatch between the two strings.

Department of Electronics & Communication Engineering
8085 108

Case 2: Here partial matching occurs between the main string and the sub-string. For example — if
the main string is “1234567890ABCDEF9988” and the sub-string is “ABCDEF1122”, it is
observed that a portion of sub-string “ABCDEF” is found into the main string. As entire sub-string
is not found into the main string, it results mismatch between the main string and the sub-string.
Therefore 02H will be stored into the memory location 8070H.

Case 3: In this case the entire sub-string is found into the main string which results successful
matching between the two strings. Hence 01H should be stored in the memory location 8070H. For
example — complete matching occurs if the main string becomes “ 1234567890ABCDEF9988” and
the sub-string is “ABCDEF9988”.

Case 4: This case consists of both partial matching and complete matching. As complete matching
is found finally, O1H will be stored into the same memory location according to the program
criteria. For example — if main string is “ 12ABCD7890ABCDEF9988” and the sub-string is
“ABCDEF9988”, then partial matching occurs for “ABCD” from 2™ position whereas complete
matching happens for “ABCDEF9988” from 6™ position.

Now these above mentioned four cases must be handled in the program to check the matching of
two strings. If the no. of 8-bit data in the main string is m and the no. of 8-bit data in the sub-string
is n, then there will be no chance of finding the whole sub-string inside the main string beyond (m —
n + 1)th data. Therefore we have to compare up to (m — n + 1)th data in the main string, beyond of
that there is no chance to get the entire sub-string into the main string. The following example will
reveal the above mentioned situation.

Suppose main string “1234567890ABCDEF8899” has 10 no. of 8-bit data and sub-string
“ABCDEF8899” has 5 no. of 8-bit data. Therefore we have to search for matching of data up to 6™

(10 =5 + 1) position i.e. up to the data “AB” into the main string, because beyond of that there is no
possibility to get the whole sub-string “ABCDEF8899”.

Here 1* 8-bit data of the sub-string is started to be compared with all the 8-bit data of main string
consecutively from 1% data to (m — n + 1)th data of the main string. If matching is found at any
stage, the rest of the data from the sub-string are compared with the data of the main string
consecutively. That means, if the 1 data of sub-string is matched with any data of main string, then
the comparisons between the pairs of the data — one from sub-string and other from main string are
performed successively until the end of the sub-string or a mismatch is found. If every pair of data
from the sub-string and the main string are matched perfectly, then it can be concluded that the sub-
string is found into the main string and if any mismatch is found, then the 1* data from sub-string
and the the data of main string where mismatch was found should be compared once again to get
the entire sub-string inside the remaining part of the main string. Here one important point to
consider that if mismatch is found after (m — n + 1)th data of the main string, then comparisons are
not carried out further to indicate the absence of the sub-string inside the main string.

Department of Electronics & Communication Engineering
8085 109

% College of Engineering and Management, Kolaghat.
S V5

L= CH 8: Programs on String Manipulation

In the following program we have taken a main string with 10 no. of data and the sub-string with 5
no. of data. Therefore comparisons should continue up to 6" data of the main string. To fulfill this
purpose register C will act as counter of main string and initialized with 06H. Similarly register B is
used as counter of sub-string and initialized with 05H. In addition to this, register pair DE has been
used as memory pointer of main string and register pair HL has been used as memory pointer for
sub-string in this program. If a match is found, register C and B both will be decremented by one
for every iteration, otherwise register C only will be decremented by one for each iteration. There
are two loops in this program — one is controlled by the counter register C and other is controlled
by the counter register B. The loop of counter register C will continue until a matching between the
1* data from the sub-string and any data [up to (m —n + 1)th data] from the main string is found. On
the other hand if a matching is found, then the loop of counter register B will be initiated. If the
loop of register B is terminated by decreasing B to zero, it is clear that the sub-string is found inside
the main string and if the loop of register C is terminated for C = 0, then the sub-string is not found
into the main string.

Assembly Language Program 8.4:

SL | Addresses Label Mnemonics Hex Codes No. of Bytes | No. of T-States
1 8000 MVI C,06 OE | 06 2 7
2 8002 LXI D,8050 11 | 50 | 80 3 10
3 8005 LXI H,8060 21 | 60 | 80 3 10
4 8008 REPEAT |LDAXD 1A 1 7
5 8009 CMPM BE 1 7
6 800A JNZNOTEQUAL | C2 | 2B | 80 3 10/7
7 800D MVI B,05 06 | 05 2 7
8 800F AGAIN |LDAXD 1A 1 7
9 8010 CMPM BE 1
10 8011 JINZ NOMATCH C2 | 26 | 80 3 10/7
11 8014 INXD 13 1 6
12 8015 INX H 23 1 6
13 8016 MOV A,C 79 1 4
14 8017 CPI 01 FE | 01 2 7
15 8019 JC BYPASS DA | ID | 80 3 10/7
16 801C DCR C 0D 1 4
17 801D BYPASS |DCRB 05 1
18 801E INZ AGAIN C2 | OF | 80 3 10/7
19 8021 MVI A,01 3E | 01 2 7

Department of Electronics & Communication Engineering
8085 110

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL. | Addresses Label Mnemonics Hex Codes No. of Bytes | No. of T-States

20 8023 JMP FINAL C3 | 32| 80 3 10

21 8026 NOMATCH |DCX D 1B 1

22 8027 INRC 0C 1

23 8028 LXI H,8060 21 | 60 | 80 3 10

24 802B NOTEQUAL |INX D 13 1

25 802C DCR C 0D 1

26 802D JNZ REPEAT C2 | 08 | 80 3 10/7

27 8030 MVI A,02 3E | 02 2 7

28 8032 FINAL STA 8070 32 | 70 | 80 3 13

29 8035 HLT 76 1 5
TOTA =54

Result of Program 8.4:
SETI » (Corresponds to Case 1)

Input Output
Main String Sub-String
Address |Content Address |Content Address|Content |Remarks
8050 12 8060 AB 8070 02 Sub-string not found
8051 34 8061 CD
8052 56 8062 EF
8053 78 8063 88
8054 87 8064 99
8055 65
8056 43
8057 21
8058 CD
8059 EF

Department of Electronics & Communication Engineering
8085 111

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 » (Corresponds to Case 1)
Input Output
Main String Sub-String
Address |Content Address |Content Address|Content |Remarks
8050 12 8060 AB 8070 |02 Sub-string not found
8051 34 8061 CD
8052 56 8062 EF
8053 78 8063 88
8054 87 8064 99
8055 65
8056 AB
8057 CD
8058 EF
8059 88

SET3 » (Corresponds to Case 2)

Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
8050 12 8060 AB 8070 |02 Sub-string not found
8051 34 8061 CD
8052 56 8062 EF
8053 78 8063 88
8054 AB 8064 99
8055 CD
8056 AB
8057 CD
8058 EF
8059 88

Department of Electronics & Communication Engineering
8085 112

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET4 » (Corresponds to Case 2)

Input Output
Main String Sub-String
Address |Content Address |Content Address|Content |Remarks
8050 12 8060 AB 8070 |02 Sub-string not found
8051 34 8061 CD
8052 AB 8062 EF
8053 CD 8063 88
8054 56 8064 99
8055 78
8056 87
8057 EF
8058 88
8059 99

SET5 » (Corresponds to Case 2)

Input Output
Main String Sub-String
Address |Content Address |Content Address | Content |Remarks
8050 12 8060 AB 8070 |02 Sub-string not found
8051 34 8061 CD
8052 56 8062 EF
8053 AB 8063 88
8054 CD 8064 99
8055 AB
8056 AB
8057 CD
8058 EF
8059 88

Department of Electronics & Communication Engineering
8085 113

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET6 » (Corresponds to Case 3)
Input Output
Main String Sub-String
Address |Content Address |Content Address|Content |Remarks
8050 12 8060 AB 8070 |01 Sub-string found
8051 34 8061 CD
8052 56 8062 EF
8053 78 8063 88
8054 87 8064 99
8055 AB
8056 CD
8057 EF
8058 88
8059 99
SET7 » (Corresponds to Case 3)
Input Output
Main String Sub-String
Address |Content Address |Content Address | Content |Remarks
8050 AB 8060 AB 8070 |01 Sub-string found
8051 CD 8061 CD
8052 EF 8062 EF
8053 88 8063 88
8054 99 8064 99
8055 12
8056 34
8057 56
8058 78
8059 87

Department of Electronics & Communication Engineering

8085

114

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SETS » (Corresponds to Case 4)

Input Output
Main String Sub-String
Address |Content Address |Content Address|Content |Remarks
8050 12 8060 AB 8070 |01 Sub-string found
8051 AB 8061 CD
8052 CD 8062 EF
8053 AB 8063 88
8054 CD 8064 99
8055 EF
8056 88
8057 99
8058 34
8059 56

SET9 » (Corresponds to Case 4)

Input Output
Main String Sub-String
Address |Content Address |Content Address | Content |Remarks
8050 12 8060 AB 8070 |01 Sub-string found
8051 34 8061 CD
8052 56 8062 EF
8053 AB 8063 88
8054 CD 8064 99
8055 AB
8056 CD
8057 EF
8058 88
8059 99

Department of Electronics & Communication Engineering
8085 115

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

8.5: Suppose two strings are stored into two memory blocks - 8050H to 8059H and 8060H to
8063 H respectively. Write a program to insert the second string into the first string starting from
the memory location 8053H.

It can be observed that the second string stored from 8060H to 8063H has four 8-bit data and the
first string stored from 8050H to 8059H has ten 8-bit data. To insert the second string at the
memory location 8053H of the first string, all the data from 8053H to 8059H must be shifted into
the memory locations 8057H to 805DH first to make a space of 4 bytes so that the second string can
be accommodated into that memory space. After shifting the data the entire second string should be
copied from the memory locations 8060H to 8063H into the memory locations 8053H to 8056H.

Now to make a space of four consecutive memory locations starting from 8053H to 8056H, seven
8-bit data of first string from the memory locations 8053H to 8059H should be shifted to the
memory locations 8057H to 805SDH. Hence register C has been considered as a counter and
initialized with 07H. After shifting these seven data, the four 8-bit data of the second string stored
from the memory location 8060H to 8063H should be copied into the memory locations 8053H to
8056H. For this purpose the register C will be initialized with 04H to act as a counter and will be
used to transfer these four data. Thus the second string will be inserted into the first string from the
memory location 8053H.

Assembly Language Program 8.5:

SL | Addresses| Label Mnemonics Hex Codes |No. of Bytes | No. of T-States
1 8000 LXI H,8059 21 | 59 | 80 3 10
2 8003 LXI D,805D 11 | 5D | 80 3 10
3 8006 MVI C,07 OE | 07 2 7
4 8008 REPEAT MOV AM 7E 1 7
5 8009 STAX D 12 1 7
6 800A DCX H 2B 1 6
7 800B DCX D 1B 1 6
8 800C DCR C 0D 1 4
9 800D JNZ REPEAT C2| 08 | 80 3 10/7
10 8010 MVI C,04 OE | 04 2 7
11 8012 LXI D,8060 11 | 60 | 80 3 10
12 8015 AGAIN |INXH 23 1 6
13 8016 LDAX D 1A 1
14 8017 MOV M,A 77 1 7

Department of Electronics & Communication Engineering
8085 116

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SL | Addresses | Label Mnemonics Hex Codes | No. of Bytes| No. of T-States

15 8018 INXD 13 1 6

16 8019 DCR C 0D 1 4

17 801A INZ AGAIN C2] 15| 80 3 10/7

18 801D HLT 76 1 5
TOTAL =30

Result of Program 8.5:

SETI »
Input Output
1* String 2™ String
Address |Content Address |Content Address Content
8050 11 8060 BB 8050 11
8051 22 8061 cc 8051 22
8052 33 8062 DD 8052 33
8053 44 8063 EE 8053 BB
8054 55 8054 ccC
8055 66 8055 DD
8056 77 8056 EE
8057 88 8057 44
8058 99 8058 55
8059 AA 8059 66
805A 77
805B 88
805C 99
805D AA

Department of Electronics & Communication Engineering
8085 117

College of Engineering and Management, Kolaghat.
CH 8: Programs on String Manipulation

SET2 »
Input Output
1* String 2™ String
Address |Content Address |Content Address Content
8050 12 8060 BC 8050 12
8051 23 8061 CD 8051 23
8052 34 8062 DE 8052 34
8053 45 8063 EF 8053 BC
8054 56 8054 CD
8055 67 8055 DE
8056 78 8056 EF
8057 89 8057 45
8058 9A 8058 56
8059 AB 8059 67
805A 78
805B 89
805C 9A
805D AB
Exercise

1) Write a program to check whether two strings are identical or not. Consider the two strings
having same length of 16 characters are stored from memory location 8050 onward and 8060
onward respectively.

2) Write a program to replace all the characters ‘A’ with the character ‘D’ in a string which is stored
from the memory location 9000H onward.

Department of Electronics & Communication Engineering
8085 118

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

9. Details of 8255 peripheral in 8085 trainer kit
Interfacing programs of 8255 in 8085 trainer kit

The 8255 is a widely used programmable, parallel I/O device. It can be programmed to transfer data
under various conditions, from simple I/O to interrupt I/O. 8255 has 24 1/O pins that can be grouped
primarily in two 8-bit parallel ports: A and B with the remaining 8-bits as port C. 8 bits of port C
can be used as individual bits or be grouped in two 4 bit ports: Cupper (Cu) and Crower (Cr) as in
Fig-9.1. The functions of these ports are defined by writing a control word in the control register.

Fig-9.2 shows all the functions of the 8255, classified according to two modes: the bit set/ reset
(BSR) mode and the I/O mode. The BSR mode is used to set or reset the bits in port C. The 1/0
mode is further divided into three modes: Mode0, Model, Mode2. In Mode0, all ports function as
simple I/O ports. Model is a handshaking mode whereby ports A and/ or port B use bits from port C
as handshaking signals. In the handshaking mode, two types of I/O data transfer can be
implemented: status check and interrupt. In Mode2, port A can be set up for bidirectional data
transfer using handshaking signals from port C and port B can be set up either in Mode0 or Model.

System Bus Peripheral Bus
oW
DO PAOQ
mmy KT el
Address Bus ‘m i .
Device
From Al fp’?g
— /RD -
MU Sl s
/WR PPI pCO i
—'.
—RST /CE

Fig-9.1: 8255 three 1/0 ports with address bus. data bus and control lines

Operation of Ports

'O Mode
l Bit Set/Reset
l l l [BSR) Mode
Mode 0 Mode 1 Maode 2
Simple /0 Made Strobed /O or Bidiactional Mode

Handshake Mode

Fig-9.2: 8255 different modes of operation

Department of Electronics & Communication Engineering
8085 119

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

8255:Programmable Peripheral Interface

GROUP A o
PORT A PAT-PAD

(8)

POWER {—" oV

SUPPLIES |, cnD GROUP A
—*] conTrOL

GROUP A i
porTC K -
BIDIRECTIONAL UPPER PC7-PC4
DATA BUS 4 ¢
: : DATA BUS | A
D7-DO BUFFER \‘ > s e ey
8-BIT GROUP B in
INTERNAL porTC K 4 BES D
T DATA BUS Lower [N :
(4)
t
_— |
RiY *q reap
WR =————sd WRITE GROUP B <—
CONTROL CONTROL GROUP B 1o
A — " oeic <—> PORT B <:::>p57_pao
Al ———— (8)
RESET ————|
.
[}
m— % Block Diagram
Fig-9.3: Block diagram of 8255 PPI
8255 PIN Names
PA3 11 40 —-PA4 SO
PAS 2 39 L pAas RESET - Reset input
PAL1 4+ 3 38 —PAG .
PAO0 + 4 37 +PA7 €% - Chip selected
RD —+5 36 —WR
CS T6 35 - RESET FF . Read input
GND4 7 34 T DO
Al <+ 8 33 4+ D1 -
A -D 32 1 Do WK - Write input
PC7 - 10 31 4-D3
PC6 - 11 30 + D4 Ay A, — Port Address
PC5 12 29 + DS
PC4 - 13 28 Do PA; - PA;, - PORT A
PCO - 14 27 + D7 -
PCl 15 26 -vVCC PBy- PB;— PORT B
PC2 T+ 16 25 TPBY7
PC3 + 17 24 —PB6 PC,—PC,—-PORTC
PBO — 18 23T PB5
PB1 |9 22 + PB4 VCC - +5v
P32 T 20 21 T+ PB3

GND - Ground

Fig-9.4: Pin diagram of 8255 PPI

Department of Electronics & Communication Engineering
8085 120

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

The block diagram and IC pin diagram of 8255 is shown in Fig-9.3 and Fig-9.4 respectively. The
block diagram of Fig-9.1 shows two 8-bit ports: A and B along with two 4-bit ports Cp and Cy. In
addition to this, there are 8-bit data bus (D0 -D7), two address lines (A0 and A1) and four control
lines: RESET, RD’, WR’ and CS'. The description of these control lines, address lines and data bus
are given below.

1) CS’, A0, Al: CS’ (Chip Select) line is used to enable the 8255 IC. CS' is normally connected to a
decoded address and and AO and A1 are generally connected to the A0 and A1 address lines of
the 8085 microprocessor. These three lines gives the range of I/O addresses for which any one of
the three ports (port A, port B, port C) and the control register will be selected for operation.

Cs’ Al A0 Selected
0 0 0 Port A
0 0 1 Port B
0 1 0 Port C
0 1 1 Control Register
1 X X 8255 chip disabled

2) RESET: It is an active high signal which clears the control register and sets all the ports in input
mode.

3) RD'": This control signal enables read operation. When this signal is low, the microprocessor
8085 reads data from a selected 1/0 port of 8255.

4) WR': This control signal enables write operation. When this signal is low, the microprocessor
8085 send/ write a data/ bit pattern into a selected I/O port or control register of 8255.

From the above discussion it is clear that the range of address by which I/O ports or control register
is selected depends upon the hardware connection of CS’ of 8255 with the 8085 microprocessor.
8255 chip is connected into the board of 8085 Trainer Kit. The schematic top views of 8255 in the
trainer kit SDA85H and SDA85M along with 26 pins sockets is shown in Fig-9.5. Among these 26
pins of the socket, 8 pins for port A, 8 pins for port B, 8 pins for port C and remaining 2 pins are
used for Vcc (+5V) and GND.

Department of Electronics & Communication Engineering
8085 121

26 Pin Connector for 8255
2 1 i& 4 20 2

0000000000000
0000000000000
+ 8255A
} 8085 uP

SDABS 7-Segment Display

Key Board

TOP VIEW OF SDA85 8085 MICROPROCESSOR KIT

Fig-9.5: Top schematic views of SDA8SH and SDA&5M Trainer kit with 26 pin connector for 8255

In top schematic views of 8085 kit only 8085 IC, 8255 IC, Kit 7-Segment display with keyboard
and 26 pin connector for 8255 peripheral are shown for simplicity. There is a three pin jumper JP4
in the trainer kit SDA85H and a two pin jumper JP4 in the trainer kit SDA85M by which the
address ranges of different PORT and Control registers are selected. The details of these addresses

for selecting different port registers of 8255 is given in the following Table.

Jumper No.

Description

3pinJP4 (1 &2
pins shorted)

Select address range
(D8H — DFH) for 8255
IC in SDA8SSH

Addresses for selected PORTs & Control Register
D8 PORT A
D9 PORT B
DA PORT C
DB Control Register
DC PORT A
DD PORT B
DE PORT C
DF Control Register

Department of Electronics & Communication Engineering

8085

122

HEERIN,
\\6;"'.-_ %
S

& College of Engineering and Management, Kolaghat.

= CH 9: Programs of 8255 interfacing in 8085 kit
Jumper No. Description Addresses for selected PORTs & Control Register
FO PORT A
F1 PORT B
F2 PORT C
3pinJP4 (2&3 Select address range F3 Control Register
pins shorted) (FOH — F7H) for 8255 1
IC in SDASSH F PORT A
F5 PORT B
F6 PORT C
F7 Control Register
D8 PORT A
D9 PORT B
DA PORT C
2 pin JP4 shorted | Select address range DB Control Register
(D8H — DFH) for 8255
IC (U4) in SDA8SM DC PORT A
DD PORT B
DE PORT C
DF Control Register
FO PORT A
F1 PORT B
F2 PORT C
2 pin JP4 shorted | Select address range F3 Control Register
(FOH — F7H) for 8255 4 PORT A
IC (U3) in SDA85SM
F5 PORT B
F6 PORT C
F7 Control Register

The 8255 Control Word is given in the following Fig-9.6. Now 8255 can be operated in two modes,
one is I/O Mode and another is BSR Mode. The selection of the mode is done with the help of D7
bit of the control word. If D7 = 1, 8255 will be operated in simple I/O Mode and if D7 = 0, 8255

will be operated in BSR (Bit Set Reset) Mode.

Department of Electronics & Communication Engineering

8085

123

EERIY,

% College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

CONTROL WORD

IE!T pe|Ds mln-3|n-z|n1|n-n|
-Eu GROUP B

PORT C (LOWER)
1 =INPU
0=0UTPUT

PORT B
-l 1=INPUT
0 =0UTPUT

MODE SELECTION
0 =MODE 0
1 =MODE 1

L 3

¥

GROUP A

PORT C !I_UFFER!
1 =INPU
0 =0UTPUT

PORT A
1 =INPUT
0 =0UTPUT

MODE SELECTION
00 = MODE 0
01 =MODE 1
1X = MODE 2

¥

¥

L 3

. MODE SELECTION FLAG

Rl = /O MODE
IO = BSR MODE

Fig-9.6: Control Word of 8255 Peripheral

In BSR Mode we can access each bit of PORT C individually. In BSR Mode, the control word is
shown in Fig-9.7.

D7|D6|D5|D4|D3(D2|D1|D0O

X X X BIT SET/RESET
1=SET
. 0 = RESET
Don't Care Bits

0 = Active BIT SELECT

PCT F'CE':FIF’CS PCJPCS PC2PC1PCO

1]0]1 [V op1 0|D1

11 Jo]lofj1]1]0o]o]|D2

1 1 1 1jolojo] 0jD3

Fig-9.7: Control Word of 8255 Peripheral for BSR mode

There is a 26 pin connector which is used to access port A, port B, port C of 8255 IC in the SDAS8S
Trainer Kit. The pin connection details of this connector with the 8255 IC is given in the following
table.

Department of Electronics & Communication Engineering
8085 124

EERIY,

7 % College of Engineering and Management, Kolaghat.

= CH 9: Programs of 8255 interfacing in 8085 kit
Pin No. of 26 pin connector Connection Description

1 PORT line PC4, IC Pin 13
2 PORT line PC5, IC Pin 12
3 PORT line PC2, IC Pin 16
4 PORT line PC3, IC Pin 17
5 PORT line PCO, IC Pin 14
6 PORT line PC1, IC Pin 15
7 PORT line PB6, IC Pin 24
8 PORT line PB7, IC Pin 25
9 PORT line PB4, IC Pin 22
10 PORT line PBS, IC Pin 23
11 PORT line PB2, IC Pin 20
12 PORT line PB3, IC Pin 21
13 PORT line PBO, IC Pin 18
14 PORT line PB1, IC Pin 19
15 PORT line PA6, IC Pin 38
16 PORT line PA7, IC Pin 37
17 PORT line PA4, IC Pin 40
18 PORT line PAS, IC Pin 39
19 PORT line PA2, IC Pin 2
20 PORT line PA3, IC Pin 1
21 PORT line PAO, IC Pin 4
22 PORT line PA1, IC Pin 3
23 PORT line PC6, IC Pin 11
24 PORT line PC7, IC Pin 10
25 JP1 Pin 2 in 85M & 85H
26 GND

Department of Electronics & Communication Engineering
8085 125

College of Engineering and Management, Kolaghat.
CH 9: Programs of 8255 interfacing in 8085 kit

8255 Port Connector Board — The pins of Port A, Port B and Port C of 8255 in SDA85H/
SDA85M/ SDAR86 kits are randomly placed in the 26 pin connector, which is very difficult to
connect to any external board/ device. To avoid this problem we have designed a PCB named 8255
PORT CONNECTOR SDA8085/86 T. KIT with model no. RI8255PCONN V1.0 to separate these
three ports Port A, Port B and Port C. Basically this board separates and segregates the ports of
8255 in SDAS8S Trainer Kit into three 8 pin connectors for Port A, Port B and Port C to ease the
connection of Ports. These board can be used for 8085 as well as 8086 Trainer Kit. In case of 8086
Trainer Kit +5V supply can be provided to any external device by shorting JP1 and +5V pins of J7
connector in 8255 Port Connector Board. Again if any external power supply is connected to the
header pin “EXT PWR_SUPPLY” of the 8255 Port Connector Board, +5V can also be delivered to
any external device by shorting JP2 and+5V pins of J7 connector. If power supply is connected
properly the LED in the board will glow as an indicator. There are three 2 pin headers placed inside
the PWR_OUT section which can be used to provide +5V supply to three different external devices
which are to be interfaced with the 8255 in Trainer Kit. In addition to this there is 26 pin Clip-based
FRC male connector which is to be connected to the 26 pin 8255 Port connector in the Trainer Kit.
The 3D top view of 8255 Port Connector Board is shown in Fig-9.8.

Fig-9.8: 3D top view of 8255 Port Connector Board

Steps to connect external device via 8255 Port Connector Board:

Step 1: Connect 26 pin 8255 connector on SDA8SH/ SDA85SM/ SDAS86 Trainer Kit with the 26 pin
male FRC connector on 8255 Port Connector Board using a F-F FRC ribbon cable.

Step 2: If SDA8SH/ SDA85M Trainer Kit is used, external power supply is connected through EXT
PWR_SUPPLY header on 8255 Port Connector Board and JP2 and +5V pin of J7 connector are to
be shorted to provide +5V to the external device.

Department of Electronics & Communication Engineering
8085 126

Step 3: If SDA86 Trainer Kit is used, external power supply may be used as described in Step 2 or
+5V may be supplied from the Trainer Kit by shorting JP1 and +5V pins of J7 connector on 8255
Port Connector Board. As soon as +5V is connected, the LED will glow on 8255 Board.

Step 4: Now +5V is supplied to the external device via any one of three PWR_OUT headers on
8255 Port Connector Board.

Step 5: Finally one or two or three ports among Port A, Port B and Port C of 8255 Port Connector
Board are connected to the external device as required.

After connecting the external device/ circuitry to the 8085 trainer kit via 8255 Port Connector Board
the hex codes of 8085 assembly language program is to be loaded on the SDA85SH/ SDA8SM
Trainer Kit to drive the external device/ circuitry according to the program objective.

9.1: Write a program to blink a set of eight LEDs in a particular pattern using 8255 peripheral
chip of SDA8SH/ SDA8SM Trainer Kit with a time delay of 1 sec.

Eight LEDs are connected to Port B of 8255 IC on 8085 Trainer Kit SDA85SH/ SDA85M via 8255
Port Connector Board with current limiting resistors of 220Q2 and ICs ULN2803. The necessary
+5V power supply is provided to the external circuitry via 8255 Port Connector Board. Now the hex
codes of assembly language program is loaded in the memory of 8085 microprocessor of SDASSH/
SDAS8S5M Trainer Kit to blink the LEDs with a time delay of 1 sec. As soon as the program loaded
in the memory will be executed, the 8 LEDs will start to blink with a given patterns. To generate a
delay of 1 sec a subroutine is written for 8085 microprocessor. The calculation of this delay
subroutine is given below.

The crystal of 6.144 MHz is connected to the SDA85SH/ SDA85SM Trainer Kit.

Therefore operating frequency of 8085 = (6.144 / 2) MHz = 3.072 MHz.

As a result every T-state becomes 0.325 psi.e. T =10.325 ps.

The delay subroutine along with no. of T states corresponding to each instruction is given below
where BC register pair will be loaded with a 16-bit initial value and this value is unknown initially.

Depending upon this value of BC register pair the subroutine will create a delay of 1 sec. Let the
initial value of BC pair is n which has been calculated as follows.

SL. Label Mnemonics of Delay Subroutine No. of T States
1 DELAY: LXI B, n 10T
2 AGAIN: NOP 4T
3 NOP 4T

Department of Electronics & Communication Engineering
8085 127

6&:‘\% College of Engineering and Management, Kolaghat.

= CH 9: Programs of 8255 interfacing in 8085 kit

4 NOP 4T
5 NOP 4T
6 NOP 4T
7 NOP 4T
8 DCX B 6T
9 MOV A,C 4T
10 ORAB 4T
11 JNZ AGAIN 10T/7T
12 RET 10T

Calculation:
Total time taken by the subroutine = 10T + n x 48T — 3T + 10T = (48n + 17) x 0.325 us
According to the criterion of the program the delay subroutine should be 1 sec.

. (48n+17) x 0.325 us =10° us

or, 48n + 17 =3076923

or, 48n = 3076906

.-.n=64102 = FA66H

Now the delay subroutine will be same with a initial value of FA66H to be stored in BC register
pair.

As port B of 8255 is being interfaced with the LED circuit to send the required bit patterns, the Port
B will be operated as output port in Mode 0 of simple I/O mode. For that purpose the control word
will be evaluated as follows.

D7 D6 D5 D4 D3 D2 D1 DO

1 0 0 0 o] 0 0 0

FORT B as
an OF PORT

IO Mode

Selected Mode D Selected
for Group B

Fig-9.9: PORT B of 8255 selected as an output PORT in Mode 0 in Group B using simple I/O Mode

Department of Electronics & Communication Engineering
8085 128

EERIY,

7 % College of Engineering and Management, Kolaghat.

= CH 9: Programs of 8255 interfacing in 8085 kit

As we have used SDAS8SH for implementing this program, the address range selected here is F4H —
F7H. Accordingly the address of Port B and control register becomes F5H and F7H respectively.
Here the blinking pattern we have chosen that all LEDs will be on simultaneously and after 1 sec
delay all LEDs will be off simultaneously, which results the two bit patterns as FFH and 00H
respectively. The entire assembly language program is given below.

Assembly language program 9.1:

SL. | Addresses Label Mnemonics No. of Bytes Hex Codes
1 8000 MVI A,80 2 3E | 80
2 8002 OUT F7 2 D3 | F7
3 8004 MVI A FF 2 3E | FF
4 8006 LOOP: OUT F5 2 D3 | F5
5 8008 MOV D,A 1 57
6 8009 CALL DELAY 3 CD | 12 | 80
7 800C MOV A,D 1 TA
8 800D CMA 1 2F
9 800E JMP LOOP 3 C3 | 06 | 80
10 8011 HLT 1 76
11 8012 DELAY: LXI B,FA66 3 01 | 66 | FA
12 8015 AGAIN: NOP 1 00
13 8016 NOP 1 00
14 8017 NOP 1 00
15 8018 NOP 1 00
16 8019 NOP 1 00
17 801A NOP 1 00
18 801B DCX B 1 0B
19 801C MOV A,C 1 79
20 801D ORAB 1 BO
21 801E JNZ AGAIN 3 C2 | 15 | 80
22 8021 RET 1 C9
TOTAL =34

Department of Electronics & Communication Engineering
8085 129

9.2: Write a program to display a single digit BCD number (0 to 9) in a 7-segment display using
8255 peripheral chip of SDASSH/ SDA8SM Trainer Kit. Assume that the single digit number will
be stored at the address 8060H.

Before implementing this experiment along with program the detail explanation of 7-segment
display is required. A 7-segment display is commonly used in electronic display devices for decimal
numbers from 0 to 9 and in some cases, basic characters. The use of LEDs in seven-segment
displays made it popular, bright and clear, easy to interface and cost effective. There are 7
illuminating segments (named as a, b, c, d, e, f, g) and a dot (named as DP) in a 7-segment display.
Corresponding to each segment and dot there is a LED inside the 7-segment display. A particular
segment in a 7-segment display becomes illuminated if the corresponding LED of that segment
glows due to the forward biasing. The pin-out of a 7-segment display is shown in Fig-9.10.

g f caa b g f cca b
=T - I - - - | O 0o oo
= 3
§ b) ¢ b

9
e| c e c
g °
= I - B - I - I - | O Ooono
e d cac DP e d cc c DP

Fig-9.10(a): Pin-out of Common Anode Fig-9.10(b): Pin-out of Common Cathode
7-segment display 7-segment display

Basically there are two types of 7-segment display namely 1) Common Anode 7-segment display
and 2) Common Cathode 7-segment display.

1) Common Anode 7-segment display — In this construction all the anodes of eight LEDs are
connected together to form a common terminal CA as shown in Fig-9.8(a). Other eight cathode
terminals are connected to eight pins namely a, b, ¢, d, e, f, g and DP. The internal schematic
diagram of a common anode 7-segment display is shown in Fig-9.11.

Fig-9.11: Internal schematic diagram of common anode 7-segment display

Department of Electronics & Communication Engineering
8085 130

2) Common Cathode 7-segment display — In this construction all the cathodes of eight LEDs are
shorted together to form a common terminal CC as shown in Fig-9.8(b). Other eight anode
terminals are connected to eight pins namely a, b, ¢, d, e, f, g and DP. The internal schematic
diagram of a common cathode 7-segment display is shown in Fig-9.12.

Fig-9.12: Internal schematic diagram of common cathode 7-segment display

Suppose in this case PORT B of 8255 is selected for sending the 8-bit data to display a single digit
BCD number on a 7-segment display and the address range FO — F3 is selected for different PORT
registers and Control register. For this purpose the following circuit is to be connected. The
interfacing circuit to display a single digit BCD number on a 7-segment display through 8255 chip,
is shown in Fig-9.13.

MR
T o X B R = 3300
=] e v
(@) U‘. . GND 15‘@“?-"“3%41 _f\/\,__.g f ;[b
g _q. .cb 'ﬁz:ﬂm @1z 2 a
i oz 5

(3{) ‘Q. ... g§ 4036 f b
0 [=] 8 D4 3043 g
Q .‘ I 1306 05 12 é
o = i 1406 7 G 15 e ll:
- 1707 Qr 16
3| =90 et) e ;5 Al

7 el d| K h
[e') a. .0’ 57 “‘
Q -9 @®:= “GND —
n GND
5 o .B
@ ~@ @y

r
Py » @ @
=

“GND

Fig-9.13: Circuit diagram to display single digit BCD on 7-segment display using 8255

Department of Electronics & Communication Engineering
8085 131

Here PORT B is used as an output PORT for sending corresponding code to 7-segment display for
the single digit number in the range of 0 to 9. Hence the control word of 8255 is given in Fig-9.14.

D7 D6 D5 D4 D3 D2 D1 DO
i]J]o]J]o|lo|]o|o]|o]|oO

FORT B as
an OF PORT

11O Mode

Selected Mode D Sel
for Group B

Fig-9.14: PORTB of 8255 selected as output PORT in Mode 0 in Group B using simple I/O Mode

So we can see from Fig-9.9 that the control word will be 80H to operate PORT B as an output
PORT and this control word is to stored inside the control register using address F3. After storing
the specified control word, the PORT B is configured as an output PORT and ready to send data to
the inputs of the LATCH 74373. The LE pin should be high and OE pin should be low to transfer
a 8-bit data from its input pins (D1, D2, D3,............) to output pins (Q1, Q2, Q3,..............) and
depending on these data the single digit number is glown on the 7-segment display. Now there are
10 8-bit codes corresponding to 10 single digit numbers which will be displayed and because of that
these codes are to be stored in a look-up table which is basically a block of memory to store these
code for 7-segment display. Suppose the look-up table starts from memory address 8050 to 8059
and is shown in the following Fig-9.15. The single digit number to be displayed, should be stored in
the memory address 8060.

PB7|PB6 | PB5 | PB4 PB3 | PB2 | PB1 | PBO Code in B;Ien:oiygddresses Displayed Single
DP| g | f | e | d | ¢ | b | a Hex f% rs ;)-seeg gi(s:glae; Digit Number
0 0 1 1 1 1 1 1 3F 8050 0
0 0 0 0 0 1 1 0 06 8051 1
0 1 0 1 1 0 1 1 5B 8052 2
0 1 0 0 1 1 1 1 4F 8053 3
0 1 1 0 0 1 1 0 66 8054 4
0 1 1 0 1 1 0 1 6D 8055 5
0 1 1 1 1 1 0 1 7D 8056 6
0 0 0 0 0 1 1 1 07 8057 7
0 1 1 1 1 1 1 1 7F 8058 8
0 1 1 0 1 1 1 1 oF 8059 9

Fig-9.15: Look-up table for single digit number display on a 7-segment display

Department of Electronics & Communication Engineering
8085 132

The flowchart of the assembly language program for 8085 kit to display a single digit number on a
7-segment display is shown in the following Fig-9.16.

Initialize Control Word
so that PORT B will be operated
as an output PORT in Mode 0

+

Initialize HL pair with the
address where the number
to be displayed is stored

-

Copy the number to be
displayed into the register E

-

Initialize register D
with 00

Initialize HL pair with
the starting address of
the Look-up table

-

Add the content of DE register pair
with HL register pair to get address
of the 7-segment display code of
the number to be displayed

Copy the code of the single
digit number for 7-segment
display in Accumulator

Send the retrieved code from
Accumulator to PORT B register
using the specific address

Fig-9.16: Flowchart of the program to display a single digit number on a 7-segment displa

Assembly Language Program 9.2:

Note: 1) Look-up table for 7-segment display codes starts from the address 8050

2) The single digit BCD number to be displayed, is stored at address 8060

SL. | Addresses Label Mnemonics No. of Bytes Hex Codes
1 8000 MVIA, 80 2 3E | 80
2 8002 OUT F3 2 D3 | F3
3 8004 LXI H, 8060 3 21 | 60 | 80
4 8007 MOV E, M 1 SE
5 8008 MVI D, 00 2 16 | 00
6 800A LXI H, 8050 3 21 | 50 | 80
7 800D DAD D 1 19
8 800E MOV A, M 1 7E
9 800F OUTF1 2 D3 | FI
10 8011 RST 5 1 EF
TOTAL =18
Department of Electronics & Communication Engineering
8085 133

10. Familiarization with 8051 Simulator

The simulation of 8051 microcontroller programs are done by using a simulation software “Keil”.
Keil is a well-known integrated development environment (IDE) used primarily for embedded
systems software development. It is developed by ARM, a leading provider of semiconductor
intellectual property. Here's an overview of Keil highlighting its key features and functionalities:

1. IDE Interface: Keil provides a user-friendly interface that integrates various tools required for

embedded systems development. It includes a text editor, project manager, and debugger, among
other tools, all within a unified environment.

2. Support for ARM Architecture : Keil primarily targets the ARM architecture, which is widely

used in embedded systems ranging from microcontrollers to sophisticated system-on-chip (SoC)
designs. It supports various ARM cores and families, including Cortex-M, Cortex-R, and
Cortex-A series processors.

3. Compiler and Debugger: Keil includes a robust C/C++ compiler optimized for ARM

architectures, capable of generating highly efficient code for embedded applications. It also
features a powerful debugger that supports source-level debugging, real-time data visualization,
and various debugging techniques like breakpoints, watch points, and trace.

4. Peripheral Simulation : Keil provides simulation capabilities that allow developers to simulate

the behavior of various peripherals commonly found in microcontrollers and other embedded
devices. This feature is valuable for testing and debugging embedded software without the need
for physical hardware.

5. RTOS Support: Keil offers support for various real-time operating systems (RTOS), including
popular ones like FreeRTOS and RTX (Keil's own RTOS). This allows developers to efficiently
develop and debug embedded applications that utilize multitasking and real-time scheduling.

6. Extensive Device Support: Keil provides extensive device support, including a wide range of

microcontrollers and development boards from various manufacturers. This makes it easier for
developers to select the appropriate target device for their projects and ensures compatibility
with Keil's tool chain.

7. Middleware and Libraries: Keil offers a suite of middleware components and libraries that

simplify common tasks in embedded systems development. This includes libraries for
communication protocols (e.g., UART, SPI, 12C), file systems, graphics, and more.

Department of Electronics & Communication Engineering
8051 134

8. Integration with ARM Ecosystem: As part of ARM's ecosystem, Keil seamlessly integrates
with other ARM development tools and technologies, such as ARM Development Studio,
CMSIS (Cortex Microcontroller Software Interface Standard), and ARM's IP portfolio.

9. Community and Support: Keil has a large user community and extensive documentation,
tutorials, and forums available to developers. This ensures that developers have access to
resources and assistance when using the IDE and tackling embedded systems development
challenges.

Overall, Keil is a comprehensive IDE used for embedded systems development, offering powerful
tools, extensive device support, and integration with ARM's ecosystem to streamline the
development process for embedded applications. In addition to these supports it also supports
8051, 8052, 8031 microcontroller that assembly language as well as C programming for 8051
microcontroller can be executed using this IDE. Keil is only compatible with Windows operating
system, but it can also be installed in Ubuntu Linux using “Wine” application.

10.1 Installation of Keil Uvision

Installation on Windows:

Download Keil uVision5 and install the free version or Trial version of this software. Only
limitation of this Trial version is that maximum 2KB of program code can be compiled and
executed in Keil Trial Version.

Installation on Ubuntu:
Stepl — Install the application Wine using the following command.

$ sudo apt install wine
Step2 — After successful installation of wine, configure it running the following command.
$ winecfg

Step3 — Now copy the setup file of Keil IDE in a director, navigate into that directory and execute
the following command.

$ wine KeilSetupFile.exe

Step4 — Continue the installation procedure as Windows.

Department of Electronics & Communication Engineering
8051 135

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

Fig-10.1: Screenshot of Keil after opening first time

To write a 8051 program in Keil a directory or folder should be created with relevant name. A
project file with relevant name and .uvproj extension should be created in the same directory.
Generally the project name and the name of the folder are kept same. After creating the project the
program of 8051 can be written in either assembly language or C language. The program written in
assembly/ C language should be saved on an file with .asm/ .c extension. Now this file is to be
added to the created project to execute it. The step-by-step procedure of writing 8051 assembly
language program in Keil is given below.

10.3 Procedure to write 8051 assembly language program:

» Click the option “New uVision Project” under the Project menu, enter a name of the project
(normally the same name of the directory) and save the project file with .uvproj in the previously
created directory.

» A window will appear where the specific microcontroller from a list of microcontrollers should
be selected. In this laboratory AT89S51 or AT89S51 should be chosen as device.

» After that a message “Copy ‘STARTUP.A51’ to Project Folder and Add File to Project” will
appear where ‘No’ option is to be selected for program in assembly language and ‘Yes’ option to
be selected for program in C language.

» After clicking ‘No’ option a ‘Target’ option will be generated in the project window at left. If we
expand it, ‘Source Group 1" option will appear as shown in Fig-10.2.

Department of Electronics & Communication Engineering
8051 136

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

Fig-10.2: Screenshot of Keil after creating a new project

» Now right click the option ‘Target’ and select ‘Option for Target Targetl’ to configure the
following options for the project.
1. Verify the microcontroller as AT89S51/ AT89S52 under ‘Device’ Tab
2. Change the crystal frequency in the text box ‘Xtal (MHz)’ as per the crystal used in your
circuit. For example — if the crystal of 11.0592MHz is used, enter the frequency in the
text box as 11.0592.
3. Check the option “Create HEX File” under ‘Output’ Tab.
After selecting the above mentioned configurations, press ok button.

» Now open a new file from ‘File’ menu which will appear as in Fig-10.3.

Bl BT ey [Doen P Dotus Pelplecis Joss S Wimsw el ————
=T 1 & N T o a- [T A
e = =

Frapert Bx]l S awid -

HE ot Lo
543 Taget1
2 Seurce Grow 1

i 1
e T L |l

Bia G

|

.l

=l

a : £
T [Smiaion ! Jexed

Fig-10.3: Screenshot of Keil after opening a new file

Department of Electronics & Communication Engineering
8051 137

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

» Now the assembly language code is written in the white space and saved with the same filename
of project with an extension .asm in the same directory where the project file has been stored
also. As soon as the file is saved with .asm extension, the text highlighting is activated in the
program code which helps to find out the syntax error. A sample program with text highlighting
in Keil is shown in Fig-10.4. In Keil every assembly language program should be started with
the directive “ORG Starting Address of the Program” and terminated with another directive
“END”.

I‘homeldebamrit\8051 Programs\Led\Led.uvproj - pVision

Ele EdC Vew Pmject Figsh [ebig Pepheris Joois QUCS Window Help
Cdd Wi ~ i @ == » rae g S a-[3] 3
(5]) - Tamet 1 - el
B Bl [Ledacm - %

=
E
T]

Fig-10.4: Sample 8051 assembly language program with text highlighting

» Finally this .asm file will be added to the project by right clicking on the ‘Source Group 1’ and
selecting the option ‘Add Existing Files to Group Source Group 1°. The program writing is
complete and now the program can be compiled, built and executed.

» Comment inside program: To give a comment inside the program, the comment line must be
preceded by ‘/*’ and terminated by ‘*/°. The simulator excludes these comment lines during
debug. Giving comment in the program is a good practice to specify explanation of the program.
This practice helps the programmer to recapitulate the logic of a complicated program in future.

» Storing Data inside Program Memory: To store the data inside program memory prior to the
execution of the program the following assembler directives should be used.

ORG Address of the Memory from where data can be stored consecutively
DB Datal, Data?2, Data3, Data4,

DB (Data Byte) is a directive which stores all the 8-bit data (Datal, Data2, Data3,.....)
consecutively starting from the address specified by “ORG”.

Department of Electronics & Communication Engineering
8051 138

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

ORG 200
DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H,7FH, 6FH

In the above example the simulator will load ten 8-bit data (3FH, 06H, SBH, 4FH, 66H, 6DH,
7DH, 07H,7FH, 6FH) consecutively starting from memory location 200 (in decimal) in the
program memory.

» Keil is not case-sensitive. So the program code can be written either in capital or small letter.

» In Keil the decimal value is represented only by number like 15,100 etc and Hexadecimal value
is represented by the number followed by ‘H’ like OFH, 64H etc.

» In Hexadecimal representation, if the first digit is alphabet, zero must be appended before it to
avoid the syntax error in Keil. For example — MOV R2, #0E2H and MOV R2, #2EH.

10.4 Procedure to Build/ Rebuild 8051 project:

» After completing the program writing the project is to be built by clicking the ‘Build’ option in
Keil as shown in Fig-10.5. Actually Build will perform multiple tasks like generation of List file
(.Ist), creation of object file (.obj), generation of Hex file (.hex) etc. In addition to this it will
check errors in program. If 0 warning 0 error occurs, Build process is completed successfully.

» After completion of Build process a list file with .Ist extension is created into the folder
“Listings” and a Hex file is created into the folder “Objects”. The list file contains the entire
program code along with the memory mapping, opcodes, operands etc. The Hex file contains the
program code in Hexadecimal numbers. Basically this Hex file is used by the Programmer
Software to burn the program code into the microcontroller chip.

» If there is some modification in the program, the project should be rebuilt by using the option
‘Rebuilt’ as shown in Fig-10.5. This will modify all the files like list file, hex file etc.

Zhame\debamifBOST Programs\Led|Led uvpro] - pision

Fig-10.5: Build and Rebuild option in Keil

Department of Electronics & Communication Engineering
8051 139

“’P:‘\"’g College of Engineering and Management, Kolaghat.
N CH 10: Familiarization with 8051 Simulator

10.5 Procedure to execute 8051 program:

» To execute the program in Keil the option “Start/ Stop Debug Session” should be clicked to start
Debug Session. In Keil any program can execute only in this session. That’s why to run any
program we must enter into this Debug Session first.

» If the program involves any peripherals like I/O ports, then the corresponding 1/O port (Port 0,
Portl, Port2, Port3) should be selected from Peripherals — 1O Ports. It will display the I/O port
wizard in front of the user as shown in Fig-10.6.

Z\home\debamrit\8051 Programs\Led\Led.uvpro| - pVision

Fie Emt Vew Pmiect Fgsh Debug Peppherals Tools SVOS Window Heip
PO Al | -ae@]e wa-[E3]A

- = ==
= R e = Y P = e R

:‘ 2 A, #0255 | =
i e eemons Start/ Stop Debug Session .
el | S £}
Run 00 Tj Lad.asm - x
Parallel Port 2 =
o2 £<—Port 2 Wizard
Nl
Bre [0F G |
Debug Session |
| o
0 X | Cafl Stack + Lol oo
i ;I R LoatinValis Ty
| ¥
|.;';Cullm+Louls o] ey

| Simulatton 1 000000000 sar- LS

Fig-10.6: Debug Session in Keil
From the above figure we can see 8 pins of Port 2 is marked with v which indicates On and if v/

is not present, it indicates Off at that pin.

» Now the Run button is to be clicked to execute the program. During execution the port wizard
functions according to the program.

» In 8051 most of the time the programs run indefinitely. Therefore Stop button should be clicked
to finish the program execution.

» Finally click ‘Start/ Stop Debug Session’ button once again to return back to the Editor Mode of
Keil where any modification of the program may be done.

Department of Electronics & Communication Engineering
8051 140

6&:‘\% College of Engineering and Management, Kolaghat.

N CH 10: Familiarization with 8051 Simulator

10.6 Procedure to store Data inside RAM during program execution: We know 8051 has 128
bytes of onchip RAM. To access 128 bytes (27 bytes) of RAM seven address lines are required.
So each address of onchip RAM of 8051 is 8 bits long. The address range of 8051 RAM is 00H
— 7FH. The address range 00H — 1FH is dedicated for four memory banks namely BankO,
Bank1, Bank2 and Bank3, the address range 20H — 2FH is used as bit addressable memory and
30H — 7FH is used as scratchpad where programmer can store some data temporarily as per his
requirement.

Keil has given the facility to store data inside scratchpad of onchip RAM by the use of the
following process.

» Open debug session by clicking the button “Start/ Stop Debug Session” as shown in Fig-10.7.

Z\hame'\de bamriti8051 ProgramsiLed\Led.uvprof - pvision

Ee BNt Yew Pije Agsh Delug Pefpherals Tooks SNCS Window Help
e [5 -afdi’le Sa-[T]s

BEOaFe A e OEEEEE-[E]5- .- 3-8 c-

0 x| | Dueseaniiy

=1+ Start/ Stop Debug Session

smags

g:°gg

Debug Session |

R LeatingNalu Tl

Freapfisakle Ersaldsakls Srealfill Braaklist | itigaaece [T
st (T P E (T

Fig-10.7: Debug Session in Keil

» Now click the tab ‘Memory1’ at the bottom right corner of the debug window which will open
the memory window as shown in Fig-10.8.

Fig-10.8: Memory window for 8051

Department of Electronics & Communication Engineering
8051 141

“’p:‘\"’s College of Engineering and Management, Kolaghat.

N CH 10: Familiarization with 8051 Simulator

» In this memory window you can insert data for onchip RAM as well as for Program ROM (flash
memory). To store data inside onchip RAM we have to follow insert the syntax into the text box
of the memory window as given below.

D:8 bit address in Hexadecimal
For example — D:50H which will allow to insert data starting from the address 5S0H onward.

Similarly to insert data into the onchip PROM the syntax “C:16bit address in Hexadecimal”
should be given in the text box. For example C:0000H will allow to store data starting from the
memory address 0000H.

» After entering the above mentioned syntax when the enter button is pressed, the contents of all
the addresses from the given address will be displayed in the memory wizard. Now the content
which is to be changed, is double clicked to select the particular address inside the RAM. The
content of the selected location is altered as per the need of the user and finally ‘Enter’ button is
pressed to save the data into the selected memory location. The sequences to store FFH into the
memory location 53H inside the scratchpad is shown in Fig-10.9, Fig-10.10 and Fig-10.11
respectively.

Z:\home\debamrit\8051 Programs\BlockTransferForward\BlockTransferForward.uvpro| - pVision

Elle Edn Wew Projet FAash Debug Pepsherals Jools SVCS Window. beip

R & « |8 ==/ i -ar@]e ca-[E]N
EEEHe mey o e AReEA-[0]e-s- 0-m- -
Tegissers B x| [ty il
heguter Value [P 3958 H, H
S e
i 0 g i
fmn 0
fn o of?
3 a0 -
|
5l
3}
u]

ASM ASS5IE7 BreakDisable SreakEnabie BreakFill Breaklisc SreakSer BreakAccess COVERAGE COVIOFILE NEFINE IR Displsy Encer EVADuate EXIT FUNC Go INCIUDE RILL LegicAnalvie |
Smulztion l LIODONT s (LICL [T

Fig-10.9: Memory location 53H is selected by double click

Department of Electronics & Communication Engineering
8051 142

College of Engineering and Management, Kolaghat.
CH 10: Familiarization with 8051 Simulator

I\home\debamrit\6051 Programs\BlockTransferForward\BlockTransferForward.uvproj - u¥ision
Eile fdt Mww Project Flash Debug Pegpbeml: Toob SVCS Windmw Help

BRI E= 1) # « [p EE U casr@e Sa-[F]%
EEHO RE e [OEEEde D289 8 e
Registers 3 % Dismsemity) §x
| valus 56 £|
e ¥
Pt e
] oon ||
o i)
{2 it
M Lt
Pk o0
" L)
P
a L)
1°b 0
H_man 07
5 Ol
mnrl)
T dotr 00N
SLaTes o
B 000000
o pow Ok}
]

bl k=

SlockTransferForuacd\\Objects)\BlockTrarsferForyard"

B
B

ASH ASSIGH EreskDisanis SreakFill Breskiisz s 3 COVERAGE COVIOFILE DEFINE DIR Miaplay Inter EVAluace ENIT FINC Go INCLUDE EILL LogicAnalyze |

Smuistion | [R:0m0000000see ([L2CE Ty e e |

Fig-10.10: Content of memory location 53H has been changed to FFH

Z:\home\debamrit\8051 Programs\BlockTransferForward\BlockTransferForward.uvpro] - pVision

Fie par Www Projed Fgsh Debug Periphersls ook GVCS Wldow Helo

TICT-Y T S S WRNE Y an@le ce[EN
g E By 0 s DReERE DD -8 9 -
Regliters m ¢ || Dsasseminy W
feogisiiy il L - 5 - |
5 Regs BE o
i o c: 2% 1 -
r) 3 i
T om
3 [l_ _1 BlckTrasslerFarwand ass - X
" o0 1 -
- 15 [=
® w0 e z
i oo 4
E- s 3
a et} 5
b w00 i
£l ma7 A
sp_max L 3
i C00) ips
...... w00 s
B dpir 00
stotes 0
et OO0
B pw a0
]
o x

ASM ASSTCHN Breaklisakl v 1s Breakiill E¥eallist SraakSar x COVERAGE COVTOFTLE DEFINE DIR Display Encer EVALUace EXIT FUMC Ca INCIODE WILL LagieAnalyse

I T

Fig-10.11: New data FFH has been saved into memory location 53H after pressing ‘Enter’

Department of Electronics & Communication Engineering
8051 143

6&:‘\% College of Engineering and Management, Kolaghat.

CH 11: Procedure to burn 8051 microcontroller

11. Procedure to burn 8051 microcontroller

8051 microcontroller can decode only binary numbers or machine level language. That’s why only
the hex codes should be written into the onchip program memory or flash memory. The Keil
simulator converts the assembly language codes to its equivalent hex codes which are stored into a
Hex file with .hex extension. Now this Hex file is used by the programmer software to dump all the
hex codes into the flash memory of the 8051 microcontroller. The procedure to dump the hex codes
of a program onto the flash memory of a microcontroller is called burning/ programming the
microcontroller chip.

11.1: Hardware Description: For this purpose we require a programmer device which will be
connected to the computer via Serial port or USB port. After successful connection with PC a
burner software will be used to dump the hex codes to the microcontroller through the programmer
device. Here we have used USBASP device and ProgISP software to burn the 8051 microcontroller
chip. The USBASP circuit board is shown in Fig-11.1.

Fig-11.1: 8051 USBASP Programmer board

There are 6 pins in the circuit board of USBASP programmer shown above namely Vce (+5V of
USB port of PC), GND, MOSI (Master Out Slave In), MISO (Master In Slave Out), SCK and
RESET. Now the 8051 microcontroller which is to be burnt is connected with the USBASP and
+5V power supply as below.

SL Pins of 8051 Connection SL Pins of 80511 Connection
1 [Vee, IC pin 40— | Vcc of USBASP 5 |[MISO, IC pin 7— MISO of USBASP
2 |GND, IC pin 20— |GND of USBASP 6 [SCK, IC pin 8— SCK of USBASP
3 |[EA, ICpin31— |Vcc of USBASP 7 |RESET, IC pin 9— |RESET of USBASP
4 |MOSI, IC pin 6— |MOSI of USBASP | 8 |XTAL2, IC pin 18— |Crystal connected
XTALI, IC pin 19— |between these 2 pins

Department of Electronics & Communication Engineering

8051

144

6&:‘\% College of Engineering and Management, Kolaghat.

= CH 11: Procedure to burn 8051 microcontroller

To establish the above mentioned connection an 8051 microcontroller mounting board
(KSR805152-MB1) has been designed where a ZIF socket has been introduced into the board to
easily connect and disconnect the 8051 chip frequently. The circuit diagram of this mounting board
is shown in Fig-11.2.

KSRE05152-MB1

JP3
{1 El U:QZMH_L c2
22 <2p

|’_ ________________ pﬁf{?j,-ﬁ.—uﬁ _______________ |
| L —medh— |
port 1 — |
e ey
I 1|_ i |
2 |
| programming p'n;______l |
= 1
| i ! e po:;:rezalﬂlply {
l iE I A P LY pin
= - ;] " | |
§ — —2r |] L
| e i 1 M3 T ’J i
| = Tl
I : ‘::: ’ __’_P I LTTT—' ii ‘: 7—1 ' 1 ‘ ':4:— 6 : PBT_conn ecLur![I
i R f : ' |
i | | - e
	EJ: o		
			port 3 13 a1 iy =
.1	""“rl\'.- ARSPT O 2		
	=		
R e o) — R			
RESET circult J I_:zl :			
\	D	: ;	
I			
I

Fig-11.2: Circuit diagram of KSR805152-MB1 mounting board

AT89S51 microcontroller has ISP (In-System Programming) feature which enables the burner to
flash the memory of the microcontroller when it is connected to the actual system or in circuit. That
means, it is not required to pull out the microcontroller from the system for burning. Keeping the
microcontroller chip into the system, it is possible to flash the program memory. The USBASP
programmer along with the KSR805152-MB1 mounting board can do the In-System Programming.
Moreover the KSR805152-MB1 board gives the facility to provide power from external supply
through a PBT connector. There are four jumpers namely JP1, JP2, JP3, JP4 having different
functionalities given in the following table.

Department of Electronics & Communication Engineering
8051 145

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Purposes

Status of the jumpers

To burn the 8051/ 8052 chip disconnecting from
system

JP1 — shorted

JP2 — open

JP3 — shorted/ open

JP4 — open (RESET circuit disconnected)

To perform ISP (In-System Programming) on
8051/ 8052 chip

Note: External power supply must
disconnected from PBT connector

be

JP1 — shorted
JP2 — shorted
JP3 — shorted
JP4 — open (RESET circuit disconnected)

Run the 8051/ 8052 chip along with its I/O
circuits from USB power supply

Note: External power supply must
disconnected from PBT connector

be

JP1 — shorted
JP2 — shorted
JP3 — shorted
JP4 — shorted (RESET circuit connected)

Run the 8051/ 8052 chip along with its I/O
circuits from external power supply

Note: External power supply must be connected
at PBT connector

JP1 — open

JP2 — shorted

JP3 — shorted

JP4 — shorted (RESET circuit connected)

The Mounting Board has a RESET circuit which is used to reset the 8051 microcontroller. When
the push button switch is pressed momentarily, the microcontroller will be reset. There are three 8
pin jumper headers connected to port 0, port 2, port 3 and a 4 pin jumper header connected to portl
(P1.0 — P1.3). These jumper headers are utilized to connect the ports of the microcontroller to the
external circuitry. A 6 pin jumper header connected to MOSI, MISO, SCK, RESET, Vcc and GND
of the microcontroller chip is used to flash/ burn the program memory of the 8051 chip with the
help of USBASP burner. The KSR805152-MB1 and Embeddinator’s 8051/ 8052 Mounting Board

are shown in Fig-11.3(a) and Fig-11.3(b) respectively.

Fig-11.3(a): KSR805152-MB1
8051 microcontroller mounting board

Fig-11.3(b): Embeddinator 8051/ 8052

microcontroller mounting board

Department of Electronics & Communication Engineering
8051

146

11.2: Software Description: The software used to burn 8051 program into the chip is ProgISP. It is
a software tool commonly used for programming microcontrollers, particularly those manufactured
by Atmel, such as 8051, 8052, AVR series microcontrollers. It provides an interface for users to
program and configure microcontrollers for various applications. ProgISP typically supports a range
of programming hardware, such as ISP (In-System Programming) programmers, which allow users
to program microcontrollers while they are already installed in a circuit. The software often
provides features like reading, writing, verifying, and erasing microcontroller memory, as well as
configuring fuses and other settings. It's a crucial tool for embedded systems developers and
hobbyists working with Atmel microcontrollers. This software is only compatible in Windows
operating system. The procedure to install the software is given below.

Stepl — To run ProgISP in Windows it is necessary to install the Windows Driver first. If the driver
is not installed, the USBASP programmer device is not detected under Device Manager even after
the device is connected to PC via USB port. After the successful installation of the Windows Driver,
‘Usbasp’ is automatically displayed under ‘LibUSB’ tab in the Device Manager of Windows as
shown in Fig-11.4.

File Action View Help
$mep || H &

a2 Sarvanan-PC
/B Computer

» vy Disk drives

By Display adapters
52 DVD/CD-ROM drives
'J- Hurnan Interface Devices
» g IDE ATA/ATAPL contrallers
.-mF Jungo

= REyBTI:

- i§ LibUSE-Win32 Devices
1§ USBasp
B .

T

Pt pi e
- Monitors

41 Multifuncton adapters
- B Meswork adapters

- Bl¥ Portable Devices
L D (0O R 1ATY

Fig-11.4: USBasp device is detected after the installation of Windows Driver of ProgISP

The windows driver for ProgISP is normally found inside the win-driver folder of ProgISP as
shown in Fig-11.5.

e Ve

ena Drivers inside=ni1 10720 Fiefolder
win-driver this folder senon 972w Fiefols

1 cpulistiot ET, ent
cpulistbtbak

%] GIVELD.SYS

= progisp.eve

|| progisp.ini

Fig-11.5: Windows Driver of ProgISP inside the folder win-driver

Open the folder win-driver and install the driver software for your operating system (Windows 10/
Windows 7).

Department of Electronics & Communication Engineering
8051 147

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Step2 — Now ProgISP software can be opened directly by double clicking on the progisp.exe file as
shown in Fig-11.5. To do this the directory containing progisp.exe along with other files should be
copied into the system and double click on progisp.exe to open and run the software. The screenshot
of the software is shown in Fig-11.6. The PRG ISP & USB ASP buttons should be bright. If it’s
greyed out , then check the USB cable connection & the driver installation.

o [Bl g Aok OAUREC (O AERupuh e 'LE- walA0EIE - £-OC BEAp -l e 3ROy e =3 &

MOGRAM |purrER
Fuse ird Lock Cont PRG ISP greyed out e
.. J§ driver not installed Losd Fash
or connection not Lo Exprom:
seccrm oo s “established comprojet
P p— : Sarvm Flash
Lash: /0192 Save Expram
Progracmng
z Dta Retoad Sawe progect
Bome0n .
R & vanfy Sgnatre i vertfy FAsH Command
T ¥\ Chip Erase iy ESRON
Sork Check Progeam
select target 7 rogam Aas Lock Chis
IC from this = 7o 5750 Ensbied XTAL
dropdewn
| THese | ko
A bind reminger:
Flease cick raadme button and get yourself famiiarzed
wrth the latest features of tis softvare befeore you
proceed 10 usng it Thark you!
State Ready Use Tirnes 00:00:00 Coprmubtin Thitena Sof teene Inc 008

Fig-11.6: ProgISP Software after opening
11.3 Procedure to burn hex code using ProgISP:

Stepl — Select the target chip (AT89S51 for 8051 microcontroller or AT89S52 for 8052
microcontroller) from the “Select Chip “ drop down menu and ensure that following options are
enabled as shown in Fig-11.7. If you enable the LOCK CHIP button , others can’t make a copy of
your chip.

1) Verify Signature 2) Chip Erase 3) Program Flash 4) Verify Flash
B i ik S AGE DAL COC BERuppeA= 2 E « s AIADRE £ DGAERGp ali CHiMESDA" O E =@ =
PROGHAM | BUFFER: | C-ECKID | COMFIG | Resdne
Config Fle
- | Losdrasn
Programs
| Load Seprom
Selact CHo. Precram State Oobers Qg Project
: 5| EBG usB tmage Data Sawe Flash
[P ATEHs5 - i»| - o
" el | Asp Flash 08132 Saur Peprow
:H’:‘::;':‘}‘W Cranged Dowry _ Data Renad Save project
S Lt S
Blank Chedk Frogra e
(Feremruss: Lok cho
Progrom e | Enabled XTAL
L _ﬁ_am Ham |
T Enable Verify , Chip Erase ,
{165 e ot faseares ¢ s st serave oy PTOgram Flash & Verify Flash
If Lock chip is enabled
others can’t copy the chip
i State Feady .Us.a ;m:s. Cl.li)u-t'l Capyriubtirh Thifena Saftware Inc 205

Fig-11.7: Target chip selected with some options enabled

Department of Electronics & Communication Engineering
8051 148

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

Step2 — Click on File — Load Flash or directly click on the button ‘Load Flash’ at the right side
panel and browse to the location of the Hex file you have created using Keil as shown in Fig-11.8
and Fig-11.9 respectively.

[0= 34t A ARG COCH A0 E-BC Ve R ST BTG L o (5
| Command Buffer About
0 LoadFlash > QIO | CONFIG | Readme |
& Load Eeprom ‘"‘"‘-.___ Fuse And Lock Config % File
COpen Project Load Flash
Programm Options
Load Eeprom
g Save Flash www.zhifengsoft.com
[E] SaveEeprom Program State Options Open Project
@@ saveproject [+ PIEG | USB [Tlimage Data Save Flash
g © | asp :
it Flash:0/8192 Save Eeprom
 BowerOn 1 Changed Down :.Bate Reload Save project
=R | Verify Signature | Verify FLASH > Command
G T 7| Chip Erase \ PROM
[IBlank Check Frogram Fi
¥ | Program FLASH Lock Chip
Program EEPROM | Enabled XTAL
[=T e
Lew | EE'”E | ﬁ Auto |

| A kind reminder;

f:Please dick readme button and get yourself famiiarized
{with the latest features of this software befeore you
iproceed to usng it. Thank you!

Fig-11.8: Load Flash button to select and load Hex file

- h*dsﬂmﬁmt’ﬁﬁﬂlﬁq{mmmta‘t&-.alé.ba:‘z-.oq.iém,l:'.li‘ev.latséi'd; = (E B
[Fie Commend Euter About |
BROSRAM | ErFER | 000 | coRlG | Resdme!
= | n e —
= S e 7
- - -
@T:)__v! « Dero Projects b BlinkLED_pl D w |45 | Seanch Biinki ED 210 2
Sedect Chip Oiganize = MNew foidet = - Fl @
B aTiocs2 - | o Music - ~ Dsterr ed
Pict
i 9 ~EhH LENSLENES
PowerCn B Video:
L v
= High i
B: # Homegroup
o P
B M Conpter browse to location of
Bl Local Disk {C:
o A .hex file & open it.
__i (o Local Dusk (D:)
i LM s LocalDisk (E)
| & lend reminder: A Diicke (F
| Pimase cick readme button and { = Lacal st)
with the latest featunes of ths 3| i Lecal Disk (G:)
Procmas te usng It Thask youl
Filename! Interfacing LED hex = | Intel Heai?.hex) =
‘ Open | [Cancel 3
S el m = = =
State Ready. Use Times 00:00:00 Capvrightir) Zhifena Soltwareine 2009 'T

Fig-11.9: Browse the Hex file

Step3 — After selecting the Hex file click the button ‘Auto’ to flash the program memory of 8051
chip with the Hex file selected. Finally a message “Erase, Write Flash, Verify Flash successfully
done” appears to indicate that 8051 program has been loaded into the 8051 chip successfully as
shown in Fig-11.10 and Fig-11.11 respectively.

Department of Electronics & Communication Engineering
8051 149

College of Engineering and Management, Kolaghat.
CH 11: Procedure to burn 8051 microcontroller

< iosalat 1A OAALG COCAERi A+ A E <o aTAOBE + £~OC AERLEula' B33 E300; £ =8 &
File Command Buffer &bout
PROGRAM |pLereR | oiE0ao | conFis | Readme
¥ FuseAnd Lack Canfig ¥ Fle
Load Fach
H Programm Options =
Load Eeprom
P o3 |
Select Chp Program State “Optiors Opeviprojeet
o amsss2 v (W) USB | [MinageData Saveflesh | |
Lo Flash:2108/8192 Save Eepram
Frogramiming
[l Powertn {Changed D Save project
= 1| Verify Sgnase - Commang
= High V] Chp Erase
[Pragram FLASH [/ Lock Cp.
Program EEPRON Clerabled XTAL s
Low | a‘ Erase | | % M""_I
Load Flash file [: 1805 1\0emo Propcts Dermo Projecis \BinkLED_pt,0Yihterfacing LED hex '
P R
| Piease click readme button and get yourself famianzed
with the laest features of ths software befeore you
proceed tousing it. Thank you!
| State Ready Use Times 00:0000 Copyright(r) Zhifena Software Inc 2008

Fig-11.10: Auto button to flash the hex code into the microcontroller chip

.-Qaia=ﬁa2ﬁ;°ﬂa€’9§pi§'§§§g-ampu.ha’?.&e.alﬂwxeiaéqéémp’-ia‘ew‘éaés’b.i [=lE] =
_File Command Buffer About
PRocRAM |purres [creaao [conr | Reade|

¥ Fuze And Lock Config File
Load Flosh
a Programm Options
WWW S LGS UL G I Load Eeprom
Select Chip Program Siate Opfiers Open Project
[p— - [# PG l;;g [Tl tmage Dats Save Flach
Flagh: 2108/8192 Save Eeprom
Programming = =
T | Changed Down |_| Date Reloed Save project
= [] verify Sgnature] verify FLASH » Command
= High Wl chioErane o e
=
V] Program FLASH

Program EEPROM

Vo | Bfeese | | H futo [
l1: Erase, Write Flash, verify Flash, Successfuly done
ed Flosh file 11805 1\Deme Projects Demo Projects BhrkLED_p 1.0Ynter facing LED. hex
A kind reminder:
T T T e
with the latest features of this software befeors vou
proceed to using it. Thank youl

Done !

Fig-11.11: Hex file is burnt successfully

Department of Electronics & Communication Engineering
8051 150

ollege of Engineering and Management, Kolaghat.
12: Programs on Arithmetic and Logical Operations

12. Programs on Arithmetic and Logical Operations

12.1: Write a program to add two 8-bit binary numbers which are stored at the memory locations
50H and 51H and also store the result of addition into memory locations 52H and 53H where
52H and 53H will hold lower and higher byte respectively.

Method 1: In case of addition of two 8-bit binary numbers, the maximum result will be 1FE when
both of the numbers are maximum i.e. FF (FF + FF = 01FE). Hence it is clear that we need an extra
bit to store the result which implies that two bytes are required to store the result where carry part
will constitute the higher byte and the remaining 8-bit of the result will constitute lower byte. To
store this two bytes of result two consecutive memory locations with addresses 52H and 53H are
required.

Assembly Language Program 12.1 (Method 1):

SL. Label Instructions of 8051
MOV B,#00H
MOV RO.,#50H
MOV A,@RO
INCRO

ADD A,@R0
JNC SKIP
INCB

SKIP INCRO

MOV @RO0,A
INCRO

MOV @R0,B
HERE SIMP HERE

O |0 | I | NN | |W [N~

—
()

—_
—_

—_
[\

Method 2: In this alternate method the addition is done using “ADD A,Data” instruction, but carry
is considered using “ADDC A,Data” instruction instead of conditional branching instruction “JNC”.

Department of Electronics & Communication Engineering
8051 151

f&% College of Engineering and Management, Kolaghat.
N

%= CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.1 (Method 2):

SL. Label Instructions of 8051

MOV RO,#50H

MOV A,@R0

INC RO

ADD A,@R0

INC RO

MOV @R0,A

MOV A,#00H

ADDC A A

O o Q| AN | n |~ |[W[N|—

INC RO

[a—
(e

MOV @R0,A

11 HERE SIMP HERE

Result of Program 12.1:

SETI »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

50 0A Nol 52 E7 Lower Byte of Result
51 DD No2 53 00 Higher Byte of Result
SET2 »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

50 FF Nol 52 FD Lower Byte of Result
51 FE No2 53 01 Higher Byte of Result

Department of Electronics & Communication Engineering
8051 152

ST

{wis% College of Engineering and Management, Kolaghat.
NG

=< CH 12: Programs on Arithmetic and Logical Operations

12.2: Write a program to add ten 8-bit binary numbers which are stored at the memory locations
starting from 50H to 59H and also store the result of addition at memory locations SAH and
5BH whereas SAH and 5BH will hold the lower and higher byte of the result respectively.

It is to determine first, what will be the maximum value of the result of ten 8-bit numbers addition
so that it can be decided that how many bytes are required to store the result. Naturally the result of
addition will be maximum, if all the ten 8-bit numbers having their maximum value i.e FF.

Hence FF + FF + FF + FF + FF + FF + FF + FF + FF + FF = 9F6 i.e 09F6

Therefore it is clear that atleast 2 bytes are required to store the result of ten 8-bit numbers addition.
We have to use two consecutive memory locations — one SAH and another 5SBH for storing the
lower byte and higher byte of the result respectively.

The concept of this program is that addition should be performed repeatedly for n times for addition
of n no. of 8-bit numbers and a register is to be taken for counting the no of carries occurred for
these multiple no. of addition. In this case register B has been taken to hold how many times the
carry occurred during 9 times addition of ten 8-bit numbers. Each time if a carry occurs the content
of register B is to be incremented by one. The ten 8-bit numbers are stored in consecutive memory
locations starting from 50H to 59H and the lower byte and the higher byte of the result will be
stored at address SAH and 5BH respectively, which is shown pictorially in the following Fig-12.1.

Addresses Contents

50 No 1

51 No 2

52 No3

53 No 4

54 No 5

55 No 6

56 No7

57 No 8

58 No 9

59 No 10

S5A Lower Byte of Result
5B Higher Byte of Result

Fig-12.1: Ten 8-bit numbers and the result of addition are stored consecutively from 50H

Department of Electronics & Communication Engineering
8051 153

College of Engineering and Management, Kolaghat.

= CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.2:

SL. Label Instructions of 8051
1 MOV R2,#09H
2 MOV B,#00H
3 MOV RO,#50H
4 MOV A,@RO0
5 REPEAT INC RO
6 ADD A,@RO
7 JNC SKIP
8 INCB
9 SKIP DJNZ R2,REPEAT
10 INC RO
11 MOV @RO0,A
12 INC RO
13 MOV @R0,B
14 HERE SIMP HERE
Result of Program 12.2:
SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
50 05 Nol 5A 11 Lower Byte of Result
51 0D No2 5B 02 Higher Byte of Result
52 DD No3
53 AA No4
54 12 No5
55 32 Nob6
56 01 No7
57 0A No8
58 IF No9
8059 0A Nol0

Department of Electronics & Communication Engineering

8051

154

¢ College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

SET2 »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

50 05 Nol 5A 5F Lower Byte of Result
51 06 No2 5B 00 Higher Byte of Result
52 07 No3

53 08 No4

54 09 No5

55 0A No6

56 0B No7

57 0C No8

58 0D No9

59 OE Nol0

12.3: Write a program to add two 64-bit binary numbers which are stored at the memory
locations starting from 50H onward and the memory locations starting from 60H onward. Store
the result of the addition starting from memory location 70H onward.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 50H to 57H and the second number starts
from 60H to 67H. Moreover, it takes at least 9 consecutive bytes to store the result of addition
starting from 70H to 78H as shown in Fig-12.2.

1% Number 2" Number
Address Content Address Content
50 Bytel 60 Bytel
51 Byte2 61 Byte2
52 Byte3 62 Byte3
53 Byte4 63 Byte4
54 Byte5 64 Byte5
55 Byte6 65 Byte6
56 Byte7 66 Byte7
57 Byte8 67 Byte8

Department of Electronics & Communication Engineering
8051 155

Jwhas College of Engineering and Management, Kolaghat.
N7y

=< CH 12: Programs on Arithmetic and Logical Operations

Result of Addition
Address Content
70 Bytel
71 Byte2
72 Byte3
73 Byte4
74 Byte5
75 Byte6
76 Byte7
77 Byte8
78 Byte9

Fig-12.2: Memory mapping of two 64-bit numbers and their result of addition

During the addition of two 8-byte numbers, addition of each bytes from two numbers are performed
starting from the lowest byte to highest byte successively i.e. addition is done first in between Bytel
of the two numbers, then between Byte2 and so on. If carry occurs after the addition of two Bytel
of two numbers, that carry will be propagated into the addition of two Byte2 of the two numbers.
Similarly if there is carry during the addition of two Byte2, that carry will be propagated into the
third bytes of the two numbers. This will go on until highest byte i.e. Byte8 addition is done. In this
case, one thing is important to consider that there is no chance of occurring any carry from the
previous stage during the addition of lowest bytes i.e. Bytel. Hence before using ADDC instruction
for adding Bytel of the two numbers, the carry flag must be zero. In this program addition will be
performed for 8 times. Therefore the register R2 should be taken as counter.

But the problem here is the shortage of memory pointing registers, because the registers RO and R1
of BankO are already being consumed to point the starting address of the two memory blocks where
minuend and subtrahend are stored. To point the memory block of the result of the addition it is
required another memory pointing register, which is served by the register RO of Bank2. Therefore
in this program it is required to switch the banks of 8051 using the two flags RSO and RS1 of PSW
(Program Status Word). Switching of the banks from BankO to Bank2 is done with the help of the
instruction “SETB PSW.4” and the switching from Bank2 to BankO is performed by using “CLR
PSW.4”.

Department of Electronics & Communication Engineering
8051 156

College of Engineering and Management, Kolaghat.
= CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.3:

SL. Label

Instructions of 8051

MOV R2,#08H

SETB PSW.4

MOV RO,#70H

CLR PSW.4

MOV RO,#50H

MOV R1,#60H

CLR C

REPEAT MOV A,@R0

O o Q| AN | n |~ |[W[N|—

ADDC A,@R1

[a—
(e

INC RO

—
—

INCRI1

[a—
\S]

SETB PSW 4

—
[98)

MOV @RO,A

[—
a

INC RO

—
(V)]

CLR PSW.4

[a—
(@)}

DINZ R2,REPEAT

—
|

MOV A,#00H

[a—
o0

ADDC A,#00H

—
o)

SETB PSW.4

)
(e

MOV @R0,A

N
—_

HERE SIMP HERE

Department of Electronics & Communication Engineering

8051

157

JuAs% College of Engineering and Management, Kolaghat.

.

CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.3:

SETI »
Input Output
Nol No2 Result
Addr |Content [Remarks| |Addr |Content |Remarks Addr |Content |Remarks
50 88 Bytel 60 01 Bytel 70 89 Bytel
51 99 Byte2 61 02 Byte2 71 9B Byte2
52 AA Byte3 62 03 Byte3 72 AD Byte3
53 BB Byte4 63 04 Byte4 73 BF Byte4
54 CcC ByteS 64 05 Byte5 74 D1 Byte5
55 DD Byte6 65 06 Byte6 75 E3 Byte6
56 EE Byte7 66 07 Byte7 76 F5 Byte7
57 FF Byte8 67 08 Byte8 77 07 Byte8
78 01 Byte9
iﬁi " putput Result
Nol Moz Addr |Content |Remarks
Addr |Content [Remarks| |Addr |Content |Remarks
50 |10 Bytel | |60 |08 Bytel 0 |8 Bytel
51|20 Byte2 | |61 |07 Byte2 7 27 Byte2
52 |30 Byte3 | |62 |06 Byte3 2|36 Byte3
53 |40 Byted | [63 |05 Byted 3 ha Byted
54|50 Byte5 | |64 |04 Bytes ™4 ByteS
55 |60 Byte6 | |65 |03 Byte6 5 63 Bytet
56 |70 Byte7 | |66 |02 Byte7 6|72 Byte7
57 (80 ByteS | (67 |01 Byte8 7 ik Byted
78 00 Byte9
Department of Electronics & Communication Engineering
8051 158

EERIY,

wja: College of Engineering and Management, Kolaghat.
NG

=< CH 12: Programs on Arithmetic and Logical Operations

i
|

12.4: Write a program to subtract two 64-bit binary numbers which are stored at the memory
locations starting from 50H onward and the memory locations starting from 60H onward. Store
the result of the subtraction starting from memory location 70H onward.

As the two numbers are 64-bit long i.e. 8 byte long, each number occupies eight consecutive
memory locations. Hence the first number starts from 50H to 57H and the second number starts
from 60H to 67H. In this case the 2™ number (subtrahend) will be subtracted from the 1% number
(minuend). Moreover, it takes 8 consecutive bytes to store the magnitude of the subtraction starting
from 70H to 77H and an extra byte is required to store the polarity of the result into the memory
location 78H as shown in Fig-12.3. If the result is negative, 01H will be stored at 78H to indicate
the negative result and 00H will be stored at the same memory location, if the result is positive.

Minuend Subtrahend
Address Content Address Content
50 Bytel 60 Bytel
51 Byte2 61 Byte2
52 Byte3 62 Byte3
53 Byte4 63 Byte4
54 Byte5 64 Byte5
55 Byte6 65 Byte6
56 Byte7 66 Byte7
57 Byte8 67 Byte8

Result of Subtraction

Address Content
70 Bytel
71 Byte2
72 Byte3
73 Byte4
74 Byte5
75 Byte6
76 Byte7
77 Byte8
78 00H/01H (Polarity)

Fig-12.3: Memory mapping of two 64-bit numbers and their result of subtraction

Department of Electronics & Communication Engineering
8051 159

¢ College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

During the subtraction of two 8-byte numbers, subtraction of each byte from two numbers are
performed starting from the lowest byte to highest byte successively i.e. subtraction is done first in
between Bytel of the two numbers, then between Byte2 and so on. If borrow occurs after the
subtraction of two Bytel of two numbers, that borrow will be propagated into the subtraction of two
Byte2 of the two numbers. Similarly if there is borrow during the subtraction of two Byte2, that
borrow will be propagated into the third bytes of the two numbers. This will go on until highest byte
i.e. Byte8. In this case, one thing is important to consider that there is no chance of occurring any
borrow from the previous stage during the subtraction of lowest bytes i.e. Bytel. Hence before
using SUBB instruction for subtracting Bytel of the two numbers, the carry flag must be zero. In
this program subtraction will be performed for 8 times. Therefore the register R2 should be taken as
counter.

Here we have followed the signed magnitude convention to improve the readability of the user. In
this convention to represent the sign of the number an extra bit is taken and the magnitude is
represented always in normal form. For example -2 will be 1 00000010 and +2 will be 0 00000010
in signed-magnitude form. To follow this convention the following method is carried out to
represent the result of subtraction in signed-magnitude form. If the result of subtraction is negative
using the instruction SUBB, the magnitude will be in 2’s complement form and the carry flag will
be set. To present the negative result in normal form the magnitude will be again 2’s complemented
and O01H will be stored as 9™ byte to show the negative result. On the contrary if the result is
positive, the instruction SUBB will give the magnitude in normal form. Hence there is no
requirement to perform 2’s complement on the magnitude and the magnitude part of the result will
be stored directly in the normal form and 00H will be saved as 9™ byte to indicate that the result is
positive.

But the problem here is the shortage of memory pointing registers, because the registers RO and R1
of BankO have been already consumed to point the starting address of the two memory blocks
where minuend and subtrahend are stored. To point the memory block of the result of the
subtraction it is essential to use another memory pointing register, which is served by the register
RO of Bank2. Therefore in this program it is necessary to switch the banks of 8051 using the two
flags RSO and RS1 of PSW (Program Status Word). Switching of the banks from Bank0 to Bank2
and vice versa is done with the help of two instructions “SETB PSW.4” and “CLR PSW.4”.

Assembly Language Program 12.4:

SL. Label Instructions of 8051
1 MOV R2,#08H
2 SETB PSW.4
3 MOV RO,#70H
4 CLR PSW.4
5 MOV RO,#50H

Department of Electronics & Communication Engineering
8051 160

College of Engineering and Management, Kolaghat.
* CH 12: Programs on Arithmetic and Logical Operations

SL. Label Instructions of 8051
6 MOV R1,#60H
7 CLR C
8 REPEAT MOV A,@RO0
9 SUBB A,@R1
10 INC RO
11 INCRI1
12 SETB PSW.4
13 MOV @RO0,A
14 INC RO
15 CLR PSWA4
16 DIJNZ R2,REPEAT
17 MOV A #00H
18 SETB PSW.4
19 MOV @RO0,A
20 JNC HERE
21 MOV R2,#08H
22 MOV RO,#70H
23 LOOP MOV A,@RO0
24 CPLA
25 ADDC A, #00H
26 MOV @RO0,A
27 INC RO
28 DJNZ R2,LOOP
29 MOV A #01H
30 MOV @RO0,A
31 HERE SJIMP HERE

Department of Electronics & Communication Engineering

8051

161

JuAs% College of Engineering and Management, Kolaghat.

.

CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.4:

SETI »
Input Output
Minuend Subtrahend Result
Addr |Content [Remarks| |Addr |Content |Remarks Addr |Content |Remarks
50 88 Bytel 60 01 Bytel 70 87 Bytel
51 99 Byte2 61 02 Byte2 71 97 Byte2
52 AA Byte3 62 03 Byte3 72 A7 Byte3
53 BB Byte4 63 04 Byte4 73 B7 Byte4
54 CcC ByteS 64 05 Byte5 74 C7 Byte5
55 DD Byte6 65 06 Byte6 75 D7 Byte6
56 EE Byte7 66 07 Byte7 76 E7 Byte7
57 FF Byte8 67 08 Byte8 77 F7 Byte8
78 00 Positive
iﬁi " . output Result
Minuend Subtrahend Addr |Content |Remarks
Addr |Content [Remarks| |Addr |Content |Remarks
50 |08 Bytel | |60 |10 Bytel 0 |98 Bytel
51|07 Byte2 | [61 |20 Byte2 7 19 Byte2
52 |06 Byte3 | |62 |30 Byte3 2 2A Byte3
53 |05 Byted | [63 |40 Byted 3 3B Byted
54 |04 Byte5 | |64 |50 Bytes ™]ac ByteS
55 |03 Byte6 | [65 |60 Byte6 5 °D Bytet
56 |02 Byte7 | |66 |70 Byte7 76 |6E Byte7
57 |0l ByteS | [67 [80 Byte8 7 i Byted
78 01 Negative
Department of Electronics & Communication Engineering
8051 162

College of Engineering and Management, Kolaghat.
H 12: Programs on Arithmetic and Logical Operations

12.5: Write a program to perform algebraic sum of two signed 8-bit binary numbers which are
stored at the memory locations 50H and 51H and also store the result of addition into memory
location 52H.

In this program two 8-bit signed numbers will be added and the result of addition which is basically
8-bit long will be stored into the memory location 52H. As both the numbers are signed, there may
be four possible cases as follows.

Case-1: Both the numbers are positive and result also will be positive.

Case-2: Both the numbers are negative and the result also will be negative.

Case-3: 1 number is positive and 2" number is negative, which gives positive result if 1% number is
larger than 2™ number and negative result occurs if 1¥ number is smaller than 2™ number.

Case-4: 1% number is negative and 2™ number is positive, which gives negative result if 1* number
is larger than 2™ number and positive result occurs if 1¥ number is smaller than 2™ number.

In 8051 microcontroller the MSB is used to represent the sign bit and the remaining bits are used as
magnitude of the signed number. If MSB is 0, the number will be considered as positive and if MSB
is 1, the number will be treated as negative. Therefore for 8-bit signed number if D7 = 0, the
number is positive and if D7 = 1, the number is negative. To fulfill this condition, a negative
number is represented in 2’s complement form and a positive one is represented in normal form in
8051. To represent a negative number the number is complemented at first omitting its negative sign
and then 1 is added to it to get the 2’s complement form. For example, -7 is first taken as 07 and
converted to its binary equivalent which is 0000 0111. Now it is complemented to 1111 1000 and
added 1 to it to get 1111 1001 which is the 2’s complement of 07 and it is used as -7 in 8051.
Therefore we can say -7 is represented as FOH in 8051 microcontroller. Therefore in signed
convention the range of 8-bit positive numbers is 0 to (27 — 1) i.e. 0 to 127 and the range of 8-bit
negative numbers is -1 to -27 i.e. -1 to -128. Now all the positive and negative numbers along with
its binary and hexadecimal forms are given in the following table.

Decimal Binary Hexadecimal
127 0111 1111 7F
126 0111 1110 7E
1 0000 0001 01
0 0000 0000 00
-1 1111 1111 (2’s complement of 1) FF
-2 1111 1110 (2’s complement of 2) FE
-128 1000 0000 (2’s complement of 128) 80

Department of Electronics & Communication Engineering
8051 163

Jwha% College of Engineering and Management, Kolaghat.
N4

=< CH 12: Programs on Arithmetic and Logical Operations

Hence it is clear that if the result of signed number addition is not in the range as per the above
table, it causes erroneous result and this is called overflow problem. For example, if -128 and -2 are
added it should result -130. But -130 is out of range (-1 to -128) for negative numbers in 8051
microcontroller. That’s why this addition will result overflow error. To encounter this overflow
problem 8051 microcontroller has an overflow flag (OV) in PSW register of 8051. If overflow
occurs, OV flag becomes 1, otherwise it remains 0. The PSW flag of 8051 microcontroller is shown
below.

CYy AC FO RS1 RSO ov - P
PSW.7 PSW.6 PSW.5 PSW.4 PSW.3 PSW.2 PSW.1 PSW.0

Program Status Word (PSW) of 8051 microcontroller

In the above PSW register each flag is accessed by its bit position like PSW.0, PSW.2 etc. Hence
overflow flag (OV) is accessed by PSW.2. Whether OV is set or not, is checked by the instruction
“JB PSW.2” where JB stands for “jump for bit” i.e. if the bit is set then it will jump, otherwise it
will not jump. Now if the following two conditions are satisfied, then OV flag will be set.

Condition 1 — If there is no carry out of D7 (CY = 0) and a carry from D6 to D7, then OV = 1.
Condition 2 — If there is a carry out of D7 (CY = 0) and no carry from D6 to D7, then OV = 1.

Therefore the status of the overflow flag can be represented as EX-OR operation between CY and
carry from D6 to D7 bit.

In this program the negative numbers are given in 2’s complement form in the memory locations
50H and 51H for algebraic addition. After performing addition the status of the overflow flag is
checked. If it is set, then the program is terminated by storing OEH at the memory location 52H
where ‘OE’ represents the overflow error. If overflow problem does not arise, the MSB (D7 bit) of
the result is checked. If it is 1, then the result is negative and also in 2’s complement form. To
increase the readability of the user, the 2°s complemented result is converted to its normal form and
the MSB (D7) is made high to indicate that the result is negative. For example, if the result is FE,
then D7 bit of the result is 1. This implies that the result is negative. Now FEH is 2’s complemented
to 02H and ORed with 80H, which results 82H. Therefore in this case the result (-2) is converted to
82H and stored at the memory location 52H. If the MSB of the result is zero, then it is positive and
the result already is in normal form. This normal form of the result is stored at the RAM location
52H.

Department of Electronics & Communication Engineering
8051 164

College of Engineering and Management, Kolaghat.
= CH 12: Programs on Arithmetic and Logical Operations

Assembly Language Program 12.5:

SL. Label

Instructions of 8051

MOV RO,#50H

MOV A,@R0

INC RO

ADD A,@R0

JB PSW.2,ERROR

MOV B,A

ANL A, #80H

CJNE A #00H,NEG

O o Q| AN | n |~ |[W[N|—

MOV A.B

[a—
(e

SIMP RESULT

—
—

NEG MOV A.B

[a—
\S]

CPLA

—
[98)

ADD A#01H

[—
a

ORL A #380H

—
(V)]

RESULT INC RO

[a—
(@)}

MOV @R0,A

—
|

SIMP HERE

[a—
o0

ERROR INC RO

—
o)

MOV A #0EH

)
(e

MOV @R0,A

N
—_

HERE SIMP HERE

Department of Electronics & Communication Engineering

8051

165

S

iwha% College of Engineering and Management, Kolaghat.
CH 12: Programs on Arithmetic and Logical Operations

Result of Program 12.5:

SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
50H 07H Positive Nol (+7) 52H 19H ov=0,
51H 12H |Positive No2 (+18) Result is +25
SET2 »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
50H FEH Negative Nol (-2) 52H FOH OV=0,
51H FBH Negative No2 (-5) Result is -7
SET3 »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
50H 80H Negative Nol (-128) | [52H 7EH OV=l1,
51H FEH |Negative No2 (-2) Resultis +126 (Error)
SET4 »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
50H 60H Positive Nol (+96) 52H A6H Ov=l,
51H 46H |Positive No2 (+70) Result is -90 (Error)
SET5 »
Input Output
Mem. Address |Content | Remarks Mem. Address | Content | Remarks
50H 7FH |Positive Nol (+127) | |52H 7DH |OV=0,
Result is +125
51H FEH |Negative No2 (-2) eSuTt 1S

Department of Electronics & Communication Engineering

8051

166

6&:‘\% College of Engineering and Management, Kolaghat.

%= CH 12: Programs on Arithmetic and Logical Operations

12.6: Write a program to multiply two 8-bit binary numbers which are stored at the memory
locations 50H and 51H and also store the result of multiplication into memory locations 52H
(lower byte) and 53H (higher byte) respectively.

Unlike 8085 microprocessor, there is an instruction to perform multiplication between two unsigned
8-bit numbers for 8051 microcontroller. The instruction for multiplication is given below.

“MUL AB” where one number is stored in the register A and other number is stored in register B.
After the multiplication the 16-bit result is stored in register B and A respectively. Register B holds
the higher byte and the register A holds the lower byte of the result. Here the number stored at the
memory location S0H will be copied to register A and the number stored at the memory location
51H will be copied to register B. Using the instruction “MUL AB” the multiplication is done and
the content of A and B are stored at the memory locations 52H and 53H respectively.

Assembly Language Program 12.6:

SL. Label Instructions of 8051
MOV RO,#50H
MOV A,@RO
INC RO

MOV B,@R0
MUL AB

INC RO

MOV @RO0,A
INC RO

MOV @R0,B
HERE SJMP HERE

O |0 | I | DN | N |~ |W [N~

—
()

Result of Program 12.6:

SETI »

Input Output

Mem. Address |Content |Remarks Mem. Address | Content | Remarks

S0H 07H Nol (Multiplicand) ||52H 7EH Lower byte of result
51H 12H No2 (Multiplier) 53H 00H Higher byte of result

Department of Electronics & Communication Engineering
8051 167

¢ College of Engineering and Management, Kolaghat.
=+ CH 12: Programs on Arithmetic and Logical Operations

12.7: Write a program to divide a 8-bit binary number stored at the memory locations 50H by
another 8-bit number stored at the memory location 51H and store the quotient at the location
52H and the remainder at the location 53H.

In 8051 microcontroller a instruction is present for 8-bit division. The instruction is given below.

“DIV AB”where the content of A is the dividend and the content of B is the divisor. After the
execution of this instruction the content of A becomes the quotient and the content of B becomes the
remainder. If the content of B is zero i.e. the divisor is equal to zero, then divide-by-zero error
occurs and OV flag is set to indicate this error. In this program after the DIV instruction the OV is
checked and if it is 1, FFH is stored at both the memory locations 52H and 53H.

Assembly Language Program 12.7:

SL. Label Instructions of 8051
MOV RO,#50H
MOV A,@RO

INC RO

MOV B,@R0

DIV AB

JB PSW.2,ERROR
INC RO

MOV @RO0,A

INC RO

MOV @R0,B
SJIMP HERE
ERROR MOV A #0FFH
INC RO

MOV @RO0,A

INC RO

MOV @RO0,A
HERE SJIMP HERE

O | X0 [Q| N[N |k |[W[[N | —

[a—
(e

f—
[a—

[a—
\]

—
(98]

—
a

—
(9]

[a—
(@)}

—
J

Department of Electronics & Communication Engineering
8051 168

ollege of Engineering and Management, Kolaghat.
12: Programs on Arithmetic and Logical Operations

Result of Program 12.7:

SETI »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
50H SFH Nol (Dividend) 52H 09H Quotient
51H 0AH No2 (Divisor) 53H 05H Remainder
SET2 »
Input Output
Mem. Address |Content |Remarks Mem. Address | Content | Remarks
50H 50H Nol (Dividend) 52H FFH Divide-By-Zero error
51H 00H No2 (Divisor) 53H FFH Divide-By-Zero error
Exercise

1) Write a program to multiply two 8-bit binary numbers which are stored at the memory locations
S0H and S51H respectively using successive addition method and also store the result of

multiplication into memory locations 52H (lower byte) and 53H (higher byte) respectively.

2) Write a program to divide a 8-bit binary number stored at the memory locations S0H by another
8-bit number stored at the memory location 51H using successive subtraction method and also
store the quotient at the location 52H and the remainder at the location 53H.

Department of Electronics & Communication Engineering

8051

169

% College of Engineering and Management, Kolaghat.
= CH 13: Programs on Data Transfer and Data Separation

13. Programs on Data Transfer and Data Separation

13.1: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 60H onward in forward direction.

This program basically performs the copy operation of a set of ten 8-bit data from one memory
location to another memory location consecutively in forward direction. The memory locations
where the ten numbers are stored, is called source block and the memory locations where the ten
numbers have to be transferred is called destination block. In this program the source block starts
from the address 50H to 59H and the destination block starts from the address 60H to 69H inside
the scratchpad area of the onchip RAM. As the data are copied in forward direction the number at
50H will be copied to 60H, the number of 51H will be copied to 61H, the number of 52H will be
copied to 62H and so on. The pictorial representation of the above mentioned procedure has been
already given for 8085 microprocessor.

Assembly Language Program 13.1:

SL. Label Instructions of 8051
MOV RO,#50H

MOV R1,#60H

MOV R2 #0AH

REPEAT MOV A,@RO

MOV @RI1,A

INC RO

INCRI1

DINZ R2,REPEAT

HERE SJIMP HERE

O X0 | QA | N | DN |k |W [N |-

Department of Electronics & Communication Engineering
8051 170

% College of Engineering and Management, Kolaghat.
= CH 13: Programs on Data Transfer and Data Separation

Result of Program 13.1:

SETI »
Input Output
Source Block Destination Block

RAM Address |Content |Remarks RAM Address |Content |Remarks
50 10 Nol 60 10 Nol
51 20 No2 61 20 No2
52 30 No3 62 30 No3
53 40 No4 63 40 No4
54 50 No5 64 50 No5
55 60 No6 65 60 No6
56 70 No7 66 70 No7
57 80 No8 67 80 No8
58 90 No9 68 90 No9
59 A0 Nol0 69 A0 Nol0

13.2: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 54H onward in forward direction.

In this program the source block extends from the RAM location S0H to 59H and the destination
block extends from 54H to SDH. Therefore six memory locations starting from 54H to 59H of the
source block are common to the destination block i.e. there is a overlapping region between the
source block and the destination block. Now if we start to copy the numbers from the starting
address of the source block to the starting address of the destination block, the numbers of the
source block stored from 54H to 59H will be completely lost before they are transferred to the
destination block. Here our aim is to copy the contents of the entire source block to the destination
block as it is, though the source block will not remain intact. That means the six data from 54H to
59H of the source block will not remain intact, but the entire source block will be copied to the
destination block from 54H to SDH without any data loss. To accomplish this, the data of the source
block should be copied starting from the last address of the source block to the last address of the
destination block. Therefore data of 59H of source block will be copied to SDH of destination
block, data of 58H of source block will be copied to SCH of destination block, data of 57H of
source block will be copied to SBH of destination block and so on.

Department of Electronics & Communication Engineering
8051 171

College of Engineering and Management, Kolaghat.
= CH 13: Programs on Data Transfer and Data Separation

Assembly Language Program 13.2:

SL. Label Instructions of 8051

1 MOV RO,#59H

2 MOV R1,#5DH

3 MOV R2,#0AH

4 REPEAT MOV A,@RO0

5 MOV @R1,A

6 DEC RO

7 DECR1

8 DJNZ R2,REPEAT

9 HERE SIMP HERE

Result of Program 13.2:

SETI »

Input Output

Source Block Destination Block

RAM Address |Content |Remarks RAM Address |Content |Remarks
50 11 Nol 54 11 Nol
51 22 No2 55 22 No2
52 33 No3 56 33 No3
53 44 No4 57 44 No4
54 55 No5 58 55 No5
55 66 Nob6 59 66 No6
56 77 No7 5A 77 No7
57 88 No8 5B 88 No8
58 99 No9 5C 99 No9
59 AA Nol0 5D AA Nol0

Department of Electronics & Communication Engineering

8051

172

College of Engineering and Management, Kolaghat.
H 13: Programs on Data Transfer and Data Separation

13.3: Write a program to transfer a block of ten data stored starting from the onchip RAM
location 50H onward to the onchip RAM location 60H onward in reverse direction.

In this program ten data of source block starting from RAM location 50H to 59H will be copied to
the destination block starting from RAM location 60H to 69H in reverse direction. Therefore the
data of source block at RAM location 50H will be copied to RAM location 69H of destination
block, the data of source block at RAM location 51H will be copied to RAM location 68H of
destination block, the data of source block at RAM location 52H will be copied to RAM location
67H of destination block and so on. To implement this the memory pointer of source block will be
incremented by one whereas the memory pointer of destination block will be decremented by one
after every data transfer.

Assembly Language Program 13.3:

SL. Label Instructions of 8051
MOV RO,#50H

MOV R1,#69H

MOV R2 #0AH

REPEAT MOV A,@RO

MOV @RI1,A

INC RO

DECRI1

DINZ R2,REPEAT

HERE SJMP HERE

O [0 | I[N N | B |W N |~

Department of Electronics & Communication Engineering
8051 173

ollege of Engineering and Management, Kolaghat.
13: Programs on Data Transfer and Data Separation

Result of Program 13.3:

SETI »
Input Output
Source Block Destination Block

RAM Address |Content |Remarks RAM Address |Content |Remarks
50 12 Nol 60 AB Nol0
51 23 No2 61 9A No9
52 34 No3 62 89 No8
53 45 No4 63 78 No7
54 56 No5 64 67 No6
55 67 No6 65 56 No5
56 78 No7 66 45 No4
57 89 No8 67 34 No3
58 9A No9 68 23 No2
59 AB Nol0 69 12 Nol

13.4: Write a program to separate positive numbers and negative numbers into two different
memory blocks from a set of ten 8-bit signed numbers which are stored consecutively starting
from the memory location 50H onward. The positive block starts from 60H onward and the
negative block starts from 70H onward in the scratchpad area of onchip RAM, where positive
count and negative count will be stored at the starting address of each block.

We know, if the MSB of a binary number is high, the number will be treated as negative number
and if the MSB is low, the number is considered as positive number. So, the MSB of each of the ten
8-bit binary numbers which are stored at the source block starting from 50H to S9H, is checked for
high or low and is separated into two blocks of memory depending upon the status of MSB. The
memory block which is storing the positive numbers, is called the positive block and the memory
block which is holding the negative numbers, is called the negative block. So here the positive
block starts from 60H onward, where the first memory location 60H holds the number of count of
positive numbers i.e. how many positive numbers and all the positive numbers begins to be stored
from 61H onward. Similarly the negative block starts from 70H onward, where the first location
70H stores the number of count of negative numbers and all the negative numbers will be stored
starting from the memory location 71H onward.

In case of 8051 microcontroller there is no sign flag present in the PSW. So we have no option to
check whether a number is positive or negative directly in 8051. To accomplish this the number will
be copied to accumulator and the content of accumulator rotated left through carry (using RLC

Department of Electronics & Communication Engineering
8051 174

College of Engineering and Management, Kolaghat.
“s=« CH 13: Programs on Data Transfer and Data Separation

instruction) for one time to get the MSB in the carry flag. Now the status of the carry flag is
checked (using JNC/ JC instruction) to decide the polarity of the number. That means if the carry
flag CY = 1, the number will be negative and if CY = 0, the number will be positive. We need three
memory pointers in this case, 1* memory pointer for source block, 2™ memory pointer for positive
block and 3™ memory pointer for negative block. In case of 8051 only two memory pointers RO and
R1 are available for register indirect addressing from Bank0. Therefore they will be used as 2™ and
3" memory pointers for positive and negative block respectively. Now the register RO from Bank2
will be utilized as 1* memory pointer for source block. Hence it is clear that the bank switching
between Bank0 and Bank?2 will be required here to implement this program.

Assembly Language Program 13.4:

SL. Label Instructions of 8051
1 SETB PSW.4
2 MOV RO,#50H
3 CLR PSW4
4 MOV R2 #0AH
5 MOV RO,#61H
6 MOV R1,#71H
7 MOV R3,#00H
8 MOV R4,#00H
9 REPEAT CLR C
10 SETB PSW.4
11 MOV A,@R0O
12 INC RO
13 RLCA
14 CLR PSWA4
15 JNC POSITIVE
16 INC R4
17 RRCA
18 MOV @R1,A
19 INCRI
20 SJMP SKIP
21 POSITIVE INCR3

Department of Electronics & Communication Engineering
8051 175

f&% College of Engineering and Management, Kolaghat.
N

%= CH 13: Programs on Data Transfer and Data Separation

SL. Label Instructions of 8051
22 RRC A
23 MOV @RO0,A
24 INC RO
25 SKIP DINZ R2,REPEAT
26 MOV 60H,R3
27 MOV 70H,R4
28 HERE SIMP HERE

Result of Program 13.4:

SETI »
Input Output
Source Block Positive Block Negative Block
Address | Content | Remarks Address |Content |Remarks| |Address |Content |Remarks
50 05 Nol 60 07 Positive 70 03 Negative
5] oD No2 Count Count
5> DD No3 61 05 +Nol 71 DD -No3
53 AA Nod 62 0D +No2 72 AA -No4
54 12 No5 63 12 +No5 73 8F -No9
55 32 No6 64 32 +Nob6
36 7 No7 65 71 +No7
57 0A Nos 66 0A +No§
58 SF No9 67 0A +Nol0
59 0A Nol0

Department of Electronics & Communication Engineering
8051 176

¢ College of Engineering and Management, Kolaghat.
CH 13: Programs on Data Transfer and Data Separation

13.5: Write a program to separate odd numbers and even numbers into two different memory
blocks from a set of ten 8-bit numbers which are stored consecutively starting from the memory
location 50H onward. The odd block starts from 60H onward and the even block starts from 70H
onward in the scratchpad area of onchip RAM, where odd count and even count will be stored at
the starting address of each block.

We know, if the LSB of a binary number is high, the number will be treated as odd number and if
the LSB is low, the number is considered as even number. So, the LSB of each of the ten 8-bit
binary numbers which are stored at the source block starting from 50H to 59H, is checked for high
or low and is separated into two blocks of memory depending upon the status of LSB. The memory
block which is storing the odd numbers, is called the odd block and the memory block which is
holding the even numbers, is called the even block. So here the odd block starts from 60H onward,
where the first memory location 60H holds the number of count of odd numbers and all the odd
numbers begin to be stored from 61H onward. Similarly the even block starts from 70H onward,
where the first location 70H stores the number of count of even numbers and all the even numbers
will be stored starting from the memory location 71H onward.

In case of 8051 microcontroller the number will be copied to accumulator and the content of
accumulator rotated right through carry (using RRC instruction) for one time to get the LSB in the
carry flag. Now the status of the carry flag is checked (using JNC/ JC instruction) to decide whether
the number is odd or even. That means if the carry flag CY = 1, the number will be odd and if CY =
0, the number will be even. We need three memory pointers in this case, 1* memory pointer for
source block, 2™ memory pointer for odd block and 3™ memory pointer for even block. In case of
8051 only two memory pointers RO and R1 are available for register indirect addressing from
Bank0. Therefore they will be used as 2™ and 3™ memory pointers for odd and even block
respectively. Now the register RO from Bank2 will be utilized as 1* memory pointer for source
block. Hence it is clear that the bank switching between Bank(O and Bank?2 will be required here to
implement this program.

Assembly Language Program 13.5:

SL. Label Instructions of 8051
SETB PSW.4

MOV RO,#50H

CLR PSWA4

MOV R2#0AH

MOV RO,#61H

MOV R1,#71H

MOV R3,#00H

N | N[N | B W N

Department of Electronics & Communication Engineering
8051 177

College of Engineering and Management, Kolaghat.
* CH 13: Programs on Data Transfer and Data Separation

SL. Label Instructions of 8051
8 MOV R4,#00H
9 REPEAT CLR C
10 SETB PSW.4
11 MOV A,@R0O
12 INC RO
13 RRCA
14 CLR PSW A4
15 JC ODD
16 INC R4
17 RLCA
18 MOV @R1,A
19 INCR1
20 SJMP SKIP
21 ODD INC R3
22 RLCA
23 MOV @RO0,A
24 INC RO
25 SKIP DINZ R2,REPEAT
26 MOV 60H,R3
27 MOV 70H,R4
28 HERE SIMP HERE

Department of Electronics & Communication Engineering
8051 178

% College of Engineering and Management, Kolaghat.
= CH 13: Programs on Data Transfer and Data Separation

Result of Program 13.5:

SETI »
Input QOutput
Source Block Odd Block Even Block
Address | Content | Remarks Address |Content |Remarks| |Address |Content |Remarks
50 05 Nol 60 04 Odd 70 06 Even
51 oD No2 Count Count
5> DD No3 61 05 Nol 71 AA No4
53 AA Nod 62 0D No2 72 12 No5
54 12 No5 63 DD No3 73 32 No6
55 32 No6 64 71 No7 74 0A No8
56 7 No7 75 8E No9
57 0A Nos 76 0A Nol0
58 8E No9
59 0A Nol0
Exercise

3) Suppose a set of ten 8-bit numbers are stored consecutively from memory location 40H onward
in the onchip RAM of 8051. Write a program to insert an element stored at memory location
4FH into the memory location 43H.

4) Suppose a set of ten 8-bit numbers are stored consecutively from memory location S0H onward
in the onchip RAM of 8051. Write a program to delete the element which is stored at memory
location 55H.

5) Write a program to store AAH and BBH alternately for 100 times starting from memory location
30H onward in the scratchpad area of 8051. Also store the last address where BBH is stored into
the register R7 of Bank3 of 8051.

6) Write a program to store first ten natural numbers consecutively from memory location S0H in
the onchip RAM of 8051.

7) Write a program to store first ten numbers of Fibonacci series consecutively from memory
location 60H in the onchip RAM of 8051.
[Hint: I" no. = 0 and 2" no. = 1 for Fibonacci series
After that nth no. = (n-1)th no. + (n-2)th no.J]

Department of Electronics & Communication Engineering
8051 179

6&:‘\% College of Engineering and Management, Kolaghat.

= CH 14: Programs on Searching and Sorting

14. Programs on Searching and Sorting

14.1: Write a program to find the largest and the smallest number from a list of ten 8-bit
numbers which are stored from the memory location 50H onward and store the largest and the
smallest numbers at memory location SAH and 5BH respectively.

In this program the largest number will be stored in register R3 whereas the smallest number will be
stored in register R4 primarily, them the largest value stored inside R3 will be transferred to
memory location SAH and the smallest value inside R4 will be transferred to memory location
5BH. To accomplish this, the 1* number at memory location S0H will be copied into R3 and R4
both. Then the next numbers stored consecutively from 51H will be compared with R3 as well as
R4 one by one. If the number is larger than the content of R3, the number will be copied to R3 to
overwrite the previous value. On the contrary, if the number is smaller than the content of R4, it
will be replaced by the number. Thus we get the largest value inside R3 and the smallest value
inside R4 finally after scanning all the ten numbers which are stored starting from the memory
location 50H to 59H.

Assembly Language Program 14.1:

SL. Label Instructions of 8051
MOV RO,#50H
MOV A,@RO
MOV R3,A

MOV R4,A

MOV R2,#09H
REPEAT INC RO

MOV B,@R0
MOV A,R3

CINE A,B,NEXTI1
NEXTI1 JNC SKIP1

MOV R3,B

SKIP1 MOV A,R4

CINE A,B,NEXT?2
NEXT2 JC SKIP2

MOV R4,B

O |0 | QA | N | DN |k |W [N |-

[S—
(e

—_—
—_—

[S—
\S]

—
[98)

—
.[;

—
9]

Department of Electronics & Communication Engineering
8051 180

.

fﬁ% College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

SL. Label Instructions of 8051
16 SKIP2 DINZ R2,REPEAT
17 INC RO
18 MOV A,R3
19 MOV @RO0,A
20 INC RO
21 MOV A,R4
22 MOV @RO0,A
23 HERE SIMP HERE
Result of Program 14.1:
SETI »
Input Output
Mem. Address |Content |Remarks 5A — DD (Largest No.)
50 05 Nol 5B — 05 (Smallest No.)
51 0D No2
52 DD No3
53 AA No4
54 12 No5
55 32 Nob6
56 71 No7
57 0A No8
58 8F No9
59 0A Nol0

Department of Electronics & Communication Engineering

8051

181

Jwis% College of Engineering and Management, Kolaghat.

= CH 14: Programs on Searching and Sorting

g

14.2: Write a program to find the number DDH from a list of ten 8-bit numbers which are stored
from the memory location 50H onward and store the number of times DDH found into the
memory location 5SAH.

In this program each and every number from the list of ten numbers stored consecutively from
memory location 50H to 59H is compared with the key number DDH. If there is a matching, the
counter register R3 will be incremented by one, otherwise the content of R3 remains unchanged.
Finally the register will hold the number times DDH found in the list of ten numbers and will be
stored at RAM location SAH.

Assembly Language Program 14.2:

SL. Label Instructions of 8051
MOV RO,#50H

MOV R2,#0AH

MOV R3,#00H
REPEAT MOV A,@RO

CJINE A, #0DDH,SKIP
INC R3

SKIP INC RO

DINZ R2,REPEAT
MOV A,R3

MOV @RO0,A

HERE SJIMP HERE

O Q| N[N |~ |[W|[N|—

[a—
(e

—
—

Department of Electronics & Communication Engineering
8051 182

College of Engineering and Management, Kolaghat.
' CH 14: Programs on Searching and Sorting

Result of Program 14.2:

Output

5A — 02 (No. of times DDH found)

Output

5A — 00 (No. of times DDH found)

SETI »

Input
Mem. Address |Content |Remarks
50 05 Nol
51 0D No2
52 DD No3
53 AA No4
54 12 No5
55 32 Nob6
56 DD No7
57 0A No8
58 8F No9
59 0A Nol0

SET2 »

Input
Mem. Address |Content |Remarks
50 05 Nol
51 0D No2
52 DO No3
53 AA No4
54 12 No5
55 32 Nob6
56 DO No7
57 0A No8
58 8F No9
59 0A Nol0

Department of Electronics & Communication Engineering

8051

183

6&:‘\% College of Engineering and Management, Kolaghat.

= CH 14: Programs on Searching and Sorting

14.3: Write a program to arrange a set of ten 8-bit numbers stored from the memory location
50H onward in ascending order.

It is a program the Bubble sort technique is used to arrange the numbers. In Bubble sort, there will
be (N — 1) no. of passes for N no. of 8-bit numbers and number of comparisons between two
consecutive numbers decreases by one for every pass. Comparisons between two successive
numbers are always started from the first number corresponding to all passes. If there are five
numbers, for 1 pass there will be four comparisons, for 2™ pass there will be three comparisons, for
3" pass two comparisons and for 4™ pass single comparison will be done. In each comparison, if
first number is greater than the second one, they are interchanged i.e. the first number goes in the
position of second number and the second number comes in the position of the first number. In this
way the largest number will occupy the last position after the completion of 1* pass. Similarly the
second largest number will be placed at the last but one position after the completion of 2™ pass. If
this process continues, we get completely sorted numbers in ascending order after the completion of
all the passes. Now it is necessary to take an example to sort five numbers in ascending order for
better clarification which is explained previously in the program of sorting for 8085 microprocessor.

Assembly Language Program 14.3:

SL. Label Instructions of 8051
MOV R2,#09H
LOOPI MOV RO,#50H
MOV A,R2

MOV R3.A
LOOP2 MOV A,@R0O
INC RO

MOV B,@R0
CINE A,B,NEXT
NEXT JC SKIP

DEC RO

MOV @R0,B
INC RO

MOV @RO0,A
SKIP DJNZ R3,LOOP2
DINZ R2,LOOP1
HERE SJMP HERE

O [0 | I | NN | B~ |W [N~

—
()

—_
[a—y

—_
N

[a—
(8]

_
S

[a—
(9]

—
(o)

Department of Electronics & Communication Engineering
8051 184

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Result of Program 14.3:

SETI »
Input Output
Before Sorting After Sorting
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
50 05 50 05
51 0D 51 0A
52 DD 52 0A
53 AA 53 0D
54 12 54 12
55 32 55 32
56 71 56 71
57 0A 57 8F
58 8F 58 AA
59 0A 59 DD

14.4: Suppose two sorted lists of ten and five numbers are stored starting from memory location
40H onward and 50H onward respectively. Write a program to merge these two sorted lists into a
separate list in such a way that the generated list also will be in sorted form and will be stored
from 60H onward. Assume all the lists are sorted in ascending order in this program.

In this case 1* sorted list is stored from 40H and 2™ sorted list is stored from 50H. If the 1* and 2™
list consist of m and n no. of elements, the 3™ list after merging will consist (m + n) no. of elements.
Here one element from the 1% list and another element from the 2™ list will be compared to each
other. Between these two elements which one is smaller will be copied into the 3™ list. Thus this
procedure will continue until any one list becomes exhausted i.e. all the elements of that list are
transferred to the 3™ list. After this, the remaining elements of the other list will be copied to 3™ list
consecutively until it becomes exhausted. Finally the 3™ list of (m + n) elements thus formed
starting from memory location 60H, becomes automatically sorted in ascending order. The above
mentioned procedure is explained pictorially as shown below with two lists of 5 and 2 elements
respectively where 7 iterations (5 + 2) are needed to create the 3 sorted list.

Department of Electronics & Communication Engineering
8051 185

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Iteration 1:

1* Sorted List 2™ Sorted List 3" Sorted List
Address | Content Address Content Address Content
40 05 (Smaller) 50 0A 60 05
41 0D 51 32
42 DD
43 DF
44 EE

Iteration 2.

1* Sorted List 3" Sorted List
Address | Content 2™ Sorted List Address Content
40 05 Address Content 60 05
41 0D 50 0A (Smaller) 61 0A
42 DD 51 32
43 DF
44 EE

Iteration 3:
3" Sorted List

1* Sorted List 2™ Sorted List Address Content
Address | Content Address Content 60 05
40 05 50 0A 61 0A
41 0D (Smaller) 51 32 62 0D
42 DD
43 DF
44 EE

Department of Electronics & Communication Engineering

8051

186

§ College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

[teration 4:

1% Sorted List

3" Sorted List

Address |Content
40 05

41 0D

42 DD

43 DF

44 EE

Iteration 5:

1* Sorted List
Address |Content
40 05
41 0D
42 DD
43 DF
44 EE

Iteration 6:

1** Sorted List
Address |Content
40 05
41 0D
42 DD
43 DF
44 EE

Address Content
2™ Sorted List 60 05
Address Content 61 0A
50 0A 62 0D
51 32 (Smaller) 63 32
2" Sorted List is exhausted
3" Sorted List
Address Content
2™ Sorted List 60 05
Address Content 61 0A
50 0A 62 0D
51 32 63 32
64 DD
3" Sorted List
Address Content
2" Sorted List 60 05
Address Content 61 0A
50 0A 62 0D
51 32 63 32
64 DD
65 DF

Department of Electronics & Communication Engineering

8051

187

2 College of Engineering and Management, Kolaghat.

CH 14: Programs on Searching and Sorting

[teration 7:

1 Sorted List

Address |Content
40 05

41 0D

42 DD

43 DF

44 EE

3" Sorted List

Address Content
2™ Sorted List 60 05
Address Content 61 0A
50 0A 62 0D
51 32 63 32
64 DD
65 DF
66 EE

Note: Gray colored cells are indicating that they have already been transferred to destination
memory locations.

In this program registers R2 and R3 acts as memory pointer of 1% sorted list and 2™ sorted list
respectively and R1 register is the memory pointer of 3™ merged list. Three registers (R4, R5 and
R6) will be used as counters of 1%, 2" and 3™ list respectively. After every comparison the smaller
element will be added to the 3™ list and the memory pointer R1 of 3™ list along with any one
memory pointer (either R2 or R3) will be incremented by 1 to get access of the next memory
location. This process will be repeated until any one counter of 1 or 2™ list becomes zero. As soon
as the particular counter of one list becomes zero, the remaining elements of the other list will be
added to the 3™ list one by one. Thus a merged 3™ list whose all the elements are arranged in

ascending order is formed ultimately.

Assembly Language Program 14.4:

SL.

Label

Instructions of 8051

MOV R1,#60H

MOV R2,#40H

MOV R3,#50H

MOV R4,#0AH

MOV R5,#05H

MOV R6,#0FH

REPEAT

MOV A,R4

CJNE A,#00H,L1

O X0 [Q| N[N |k |[W[N[—

L4

MOV A,R3

Department of Electronics & Communication Engineering

8051

188

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

SL. Label Instructions of 8051
10 MOV RO,A
11 MOV A,@R0O
12 MOV @R1,A
13 INC R3
14 INCRI1
15 DEC RS
16 SIMP L3
17 L1 MOV AR5
18 CJINE A,#00H,L2
19 L5 MOV A,R2
20 MOV RO,A
21 MOV A,@R0O
22 MOV @R1,A
23 INC R2
24 INCRI1
25 DEC R4
26 SIMP L3
27 L2 MOV A,R2
28 MOV RO,A
29 MOV A,@RO0
30 MOV B,R3
31 MOV R0O,B
32 MOV B,@RO0
33 CINE A,B,NEXT
34 NEXT JNC L4
35 SIMP L5
36 L3 DINZ R6,REPEAT
37 HERE SJIMP HERE

Department of Electronics & Communication Engineering
8051 189

College of Engineering and Management, Kolaghat.
CH 14: Programs on Searching and Sorting

Result of Program 14.4:
SETI »
Input Output
1 Sorted List 2" Sorted List 3" Sorted List

Address | Content Address Content Address Content

40 05 50 0A 60 05

41 0D 51 IF 61 0A

42 A5 52 32 62 0D

43 AA 53 A9 63 1F

44 AF 54 B9 64 32

45 Bl 65 A5

46 CcC 66 A9

47 D6 67 AA

48 DA 68 AF

49 DD 69 Bl
6A B9
6B CcC
6C D6
6D DA
6E DD

Exercise

1) Write a program to find the largest number from a list of sixteen 8-bit numbers which are stored from the
memory location S0H onward and store the largest number in register R3.

2) Write a program to find the smallest number from a list of ten 8-bit numbers which are stored from the
memory location SOH onward and store the smallest number in register R4.

3) Write a program to arrange a set of ten 8-bit numbers stored from the memory location SOH onward in
descending order using bubble sort.

4) Write a program to determine the no. of times FF present in a set of 20 8-bit numbers which are stored
from memory location 60H. Store the count value at the memory location SFH.

5) Suppose two sorted lists of eight and five numbers are stored in ascending order starting from memory
location 40H onward and 50H onward respectively. Write a program to merge these two sorted lists into a
separate list in such a way that the generated list will be in descending order and will be stored from
9050H onward.

Department of Electronics & Communication Engineering
8051 190

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15. Programs on Data Conversion

15.1: Write a program to convert a 2-digit packed BCD number stored at memory location 50H to
unpacked BCD numbers which will be stored at memory locations 51H and 52H.

We know that a 2-digit packed BCD number is 8 bits long where lower 4 bits (lower nibble) forms
LSD (Least significant digit) and upper 4 bits (upper nibble) forms MSD (Most significant digit).
Now these two digits should be separated to form two unpacked BCD numbers. For example — 52 is
a packed BCD and the corresponding unpacked BCD numbers are 05 (MSD) and 02 (LSD).

Now to extract out the LSD the packed BCD should be AND operated with OFH. On the contrary
the MSD will be separated after performing AND operation with FOH and the result of AND
operation has to be shifted right 4 times. How a packed BCD 52H will be converted to unpacked
BCDs are shown below.

2-digit packed BCD (52H) — 0 1 0 1 0 0 1 0
OFH— 0 0 0 0 1 1 1 1

Bitwise AND operation —
Unpacked BCD with LSD (02H) — 0 0 0 0 0 0 1 0

2-digit packed BCD (52H) —» 0 1 0 1 0 0 1 0
FOH —» 1 1 1 1
Bitwise AND operation —

S
(e}
(e}
(e}

Result of AND operation (SOH) — 0 1 0 1 0 0 0 0
After 1% right shift -» 0 0 1 0 1 0 0 0

After 2" right shift —» 0 0 0 1 0 1 0 0

After 3" right shift —» 0 0 0 0 1 0 1 0

Unpacked BCD with MSD (05H) — 0 0 0 0 0 1 0 1

(After 4™ right shift)

Department of Electronics & Communication Engineering
8051 191

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.1:

SL. Label Instructions of 8051

1 MOV RO,#50H

2 MOV A,@RO0

3 MOV R2,A

4 ANL A #0FH

5 INC RO

6 MOV @RO0,A

7 MOV A,R2

8 ANL A #0FOH

9 RR A

10 RR A

11 RR A

12 RR A

13 INC RO

14 MOV @RO0,A

15 HERE SIMP HERE
Result of Program 15.1:

SETI »

Input Output

Address Content |Remarks Address |Content |Remarks

50 68 2 digit packed BCD | |51 08 Unpacked BCD with LSD

52 06 Unpacked BCD with MSD

ﬁiﬁ > Output

Address Content |Remarks Address |Content |Remarks

50 94 2 digit packed BCD 51 04 Unpacked BCD with LSD

52 09 Unpacked BCD with MSD

Department of Electronics & Communication Engineering

8051

192

College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

15.2: Write a program to convert two unpacked BCD numbers stored at memory locations 50H
and 51H to a two digits packed BCD number which will be stored at memory locations 52H.
Assume that the memory locations 50H and 51H is holding the unpacked BCD numbers

containing MSD and the unpacked BCD number containing LSD respectively.

In this program two unpacked BCD numbers — one containing LSD and other containing MSD are
joined together to a two digits packed BCD numbers. To do this the unpacked BCD consisting of
MSD are shifted left for four times and then it will be OR-operated with the unpacked BCD
consisting of LSD to construct the packed BCD number. Two unpacked BCD numbers 04 (LSD)
and 08 (MSD) are converted to 2-digit packed BCD using the following technique as shown below.

Unpacked BCD containing MSD (08H) —

After 1* left shift —
After 2™ left shift —
After 3 left shift —
After 4" left shift —

Unpacked BCD containing LSD (04H) —
Bitwise OR operation —
2-digit Packed BCD (84H) —

Assembly Language Program 15.2:

~

o~ o o oo

w

co—~ococoW
c oo ~ocooW
oo oo —~o
cococ o oW

w

e == =R

[

c o oo oo

oo oo oo

f=}

SL.

Label

Instructions of 8051

MOV RO,#50H

MOV A,@R0

RLA

RLA

RLA

RLA

INC RO

MOV B,@R0

O [0 | QI | NN | |W [N |~

ORL A,B

[S—
-

INC RO

—_
—_—

MOV @RO0,A

[S—
\S]

HERE:

SIMP HERE

Department of Electronics & Communication Engineering

8051

193

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.2:

SETI »

Input Output

Address | Content | Remarks Address Content |Remarks

50 07 Unpacked BCD containing MSD 52 72 Packed BCD
51 02 Unpacked BCD containing LSD
SET2 » Output

Input ~ulpul

Address | Content | Remarks - Address Content | Remarks

50 06 Unpacked BCD containing MSD 5 65 Packed BCD
51 05 Unpacked BCD containing LSD

15.3: Write a program to convert a 2-digit packed BCD number stored at memory location 50H to
its equivalent Hexadecimal number which will be stored into memory location 51H.

Method 1: The two packed digit BCD number is converted to two unpacked BCD numbers first.
For example if the packed BCD number is 25, the unpacked BCD numbers will be 02 and 05
respectively, where 02 is MSD (Most significant digit) and 05 is LSD (Least significant digit). Here
basically the two digits are separated and LSD is added with 10 times of MSD to get the equivalent
Hexadecimal number. Therefore Hexadecimal number = 10 x MSD + LSD.

In this program 10 x MSD is stored in register A and LSD is stored in register R3. Finally register A
and register R3 are added together to get the Hexadecimal number. We know 10 x MSD = 8 x MSD
+ 2 x MSD. If a number is shifted left 3 times, it will be multiplied with 8 and if a number is shifted
left 1 time, it will be multiplied with 2. Here initially MSD is in the upper nibble and the lower
nibble is zero. If it is shifted right 1 time, it is equivalent to shifting left 3 times for getting 8§ x MSD
and if it is shifted right 3 times we shall get 2 x MSD. Here the number masked with FOH is shifted
right one time to get 8 x MSD and shifted right 3 times to get 2 x MSD. Finally there two are added
together to get 10 x MSD. This is explained in the following example.

The packed BCD number = 25

Masked with OF = 05 and masked with FO =20 = 0010 0000
After shifted right 1 time = 0001 0000 =16 =8 x 2

After shifted right 3 times = 0000 0100 =4 =2 x 2

Now 10 x2=8x2+2x2

Therefore equivalent HEX number = 10 x 2 + 05

Department of Electronics & Communication Engineering
8051 194

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.3 (Method 1):

SL. Label Instructions of 8051
MOV A,50H
MOV R2,A
ANL A #0FH
MOV R3,A
MOV A,R2
ANL A #0FOH
RR A

MOV R2,A
RR A

RR A

ADD A,R2
ADD A,R3
MOV 51H,A
14 HERE SJIMP HERE

O o Q| AN | n |~ |[W[N|—

[a—
(e

—
—

[a—
\S]

—
[98)

Method 2: In this method the two digit packed BCD number is unpacked into LSD (least significant
digit) and MSD (most significant digit) first, then the MSD is multiplied by 10 with the help of
“MUL AB” instruction of 8051 microcontroller. Thus the achieved 10 times of MSD is added with
the unpacked LSD to get the equivalent hexadecimal number.

Assembly Language Program 15.3 (Method 2):

SL. Label Instructions of 8051
MOV A,50H

MOV R2,A

ANL A #0FH

MOV R3,A

MOV A,R2

ANL A, #0FOH

RR A

N NN | B W

Department of Electronics & Communication Engineering
8051 195

6&:‘\% College of Engineering and Management, Kolaghat.

= CH 15: Programs on Data Conversion
SL. Label Instructions of 8051
8 RR A
9 RR A
10 RR A
11 MOV B.#10
12 MUL AB
13 ADD A,R3
14 MOV 51H,A
15 HERE SIMP HERE

Result of Program 15.3:

SETI »

Input Output

RAM Address |Content |Remarks Mem. Address |Content |Remarks

50 99 2 digit packed BCD | |51 63 Equivalent Hex No.
SET2 »

Input Output

RAM Address |Content |Remarks RAM Address |Content |Remarks

8050 15 2 digit packed BCD | |51 OF Equivalent Hex No.

15.4: Write a program to convert an 8-bit Hexadecimal number stored at memory location 50H to
unpacked BCD numbers which will be stored starting from memory location 51H.

Method 1: In this case the Hexadecimal number is converted to three unpacked BCDs i.e. three
digits are separated and saved into three different memory locations. For example — if the
Hexadecimal number is FEH (254 in Decimal), then three unpacked BCD digits 02, 05 and 04 will
be stored into three consecutive memory locations starting from 51H. That means MSD (most
significant digit) will be stored at 5S1H, ID (Intermediate digit) will be stored at 52H and LSD (least
significant digit) will be stored at 53H. For this purpose the Hexadecimal number is divided by 100
(64 in HEX) first, where quotient gives the 1* unpacked BCD (MSD). The remainder is again
divided by 10 (0A in HEX) to get 2™ unpacked BCD (ID) in the quotient and 3™ unpacked BCD
(LSD) in the remainder. These three unpacked BCDs are stored consecutively in the memory
locations starting from 51H to 53H.

Department of Electronics & Communication Engineering
8051 196

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.4 (Method 1):

SL. Label Instructions of 8051
MOV RO,#50H
MOV A,@RO
MOV B,#100
DIV AB

INC RO

MOV @RO0,A
MOV A,B
MOV B #10
DIV AB

INC RO

MOV @RO0,A
INC RO

MOV @R0,B
14 HERE SJIMP HERE

O o Q| AN | n |~ |[W[N|—

[a—
(e

—
—

[a—
\S]

—
[98)

Method 2: In this case the Hexadecimal number is converted to three unpacked BCDs i.e. three
digits are separated and saved into three different memory locations. For example — if the
Hexadecimal number is FEH (254 in Decimal), then three unpacked BCD digits 04, 05 and 02 will
be stored into three consecutive memory locations starting from 51H. That means LSD (least
significant digit) will be stored at 51H, ID (Intermediate digit) will be stored at 52H and MSD
(most significant digit) will be stored at 53H. To do this the hexadecimal number is divided by 10,
which will give 3™ unpacked BCD (LSD) as remainder, after that the quotient is again divided by
10 to give 2™ unpacked BCD (ID) as remainder and 1 unpacked BCD (MSD) as quotient.

Assembly Language Program 15.4 (Method 2):

SL. Label Instructions of 8051
1 MOV RO,#50H
2 MOV A,@RO0O
3 MOV B,#10
4 DIV AB

Department of Electronics & Communication Engineering
8051 197

JuAs% College of Engineering and Management, Kolaghat.

.

CH 15: Programs on Data Conversion
SL. Label Instructions of 8051

5 INC RO

6 MOV @R0,B

7 MOV B,#10

8 DIV AB

9 INC RO

10 MOV @R0,B

11 INC RO

12 MOV @R0,A

13 HERE SIMP HERE

Result of Program 15.4:

SETI »
Input Output
RAM Address |Content |Remarks RAM Address |Content |Remarks
50 FD 2 digit Hex No. 51 02 Unpacked BCD1
52 05 Unpacked BCD2
Hex No. = FD Equivalent Decimal No. =253
53 03 Unpacked BCD3
SET2 »
Input Output
RAM Address |Content |Remarks RAM Address |Content |Remarks
50 El 2 digit Hex No. 51 02 Unpacked BCD1
52 02 Unpacked BCD2
Hex No. = E1 Equivalent Decimal No. = 225 53 05 Unpacked BCD3

Department of Electronics & Communication Engineering
8051 198

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.5: Write a program to convert a Hexadecimal number to its equivalent ASCII numbers. Store
the Hexadecimal number at 60H and corresponding ASCII numbers at 61H and 62H
respectively.

A single digit Hexadecimal number is represented by any digit from 0 to 9 and any alphabet from A
to F. Here the two digit Hexadecimal number is separated into two single digit Hexadecimal number
by masking the upper nibble, right shifting and masking the lower nibble. Now each single digit
Hexadecimal number will be converted to its equivalent ASCII numbers. The ASCII values of 0 to
9 and A to F are given below.

Hexadecimal Number ASCII Value
0 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
41H
42H
43H
44H
45H
46H

Him|g|la|lm|(»lo|lo|alalnulb]w|]|—

From the ASCII chart it is clear that if Hexadecimal number lies between 0 to 9, 30H will be added
with the Hexadecimal number and if Hexadecimal number lies between A to F, then 37H should be
added with it to get the corresponding ASCII value.

For example — the hexadecimal number 4EH is separated into 04 (MSD) and OE (LSD) whereas 04
is achieved by masking with FOH and right shifting it four times and OEH is achieved by masking
with OFH. Now 30H is added with 04H to get the corresponding ASCII value 34H. On the other
hand 37H is added with OEH to get the ASCII value 45H.

Department of Electronics & Communication Engineering
8051 199

College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

Assembly Language Program 15.5:

SL. Label Instructions of 8051
1 MOV RO,#60H
2 MOV A,@RO
3 MOV B,A
4 ANL A #0FH
5 ACALL HEX2ASCII
6 INC RO
7 MOV @RO0,A
8 MOV A,B
9 ANL A #0FOH
10 RR A
11 RR A
12 RR A
13 RR A
14 ACALL HEX2ASCII
15 INC RO
16 MOV @RO0,A
17 HERE SIMP HERE
18 HEX2ASCII CINE A #0AH,NEXT
19 NEXT JC DIGIT
20 ADD A #07H
21 DIGIT ADD A #30H
22 RET

Department of Electronics & Communication Engineering

8051

200

ja% College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

Result of Program 15.5:

SETI »
Input Output
Address Content |Remarks Address |Content |Remarks
60 SF 2 digit Hex No. 61 35 ASCII Value of 5
62 46 ASCII Value of F
SET2 »
Inout Output
Address Content |Remarks Address |Content |Remarks
60 A0 2 digit Hex No. 61 41 ASCII Value of A
62 30 ASCII Value of 0

Department of Electronics & Communication Engineering

8051

201

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.6: Write a program to construct a Hexadecimal number from two ASCII numbers which are
stored at RAM locations 60H and 61H respectively. Store the Hexadecimal number at RAM
location 62H.

A single digit Hexadecimal number is represented by any digit from 0 to 9 or any alphabet from A
to F. We know that the ASCII values of 0 to 9 lies between 30H to 39H and the ASCII values of A
to F lies between 41H to 46H according the ASCII table given below. As a hexadecimal number
will be constructed using the two ASCII values, the ASCII values should be provided between 30H
to 39H or 41H to 46H. In this program the ASCII value stored at 60H will be used to form the MSD
of the hexadecimal number and the ASCII value stored at 61H will be utilized to construct LSD of
the hexadecimal number. Now the generated MSD will be shifted left for four times and OR-
operated with the LSD to construct the packed 2-digit hexadecimal number.

Hexadecimal Number ASCII Value
0 30H
31H
32H
33H
34H
35H
36H
37H
38H
39H
41H
42H
43H
44H
45H
46H

mim|g|lQ|lw|»|lo|lo|a|lalulbs]w|]|~

From the ASCII chart it is clear that if ASCII value lies between 30H to 39H, 30H will be
subtracted from the ASCII value and if ASCII value lies between 41H to 46H, then 37H will be
subtracted from it to get the corresponding single digit hexadecimal number. In this way two single
digit hexadecimal numbers, one MSD and other LSD, are formed and finally the LSD is OR-
operated with 4 times left shifted version of MSD to generate the hexadecimal number.

Department of Electronics & Communication Engineering
8051 202

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Assembly Language Program 15.6:

SL. Label

Instructions of 8051

MOV RO,#60H

MOV A,@R0

ACALL ASCII2HEX

RLA

RLA

RLA

RLA

MOV B,A

O [0 [QA | N[N |k |[W[[N —

INC RO

[a—
(e

MOV A,@R0

—
—

ACALL ASCII2HEX

[a—
\S]

ORL A,B

—
[98)

INC RO

[—
a

MOV @R0,A

—
9]

HERE

SIMP HERE

[a—
(@)}

ASCII2ZHEX

CLR C

—
|

SUBB A,#30H

[a—
o0

CINE A #0AH,NEXT

—
o)

NEXT

JC NOACTION

)
(e

SUBB A #07H

N
—_

NOACTION

RET

Department of Electronics & Communication Engineering

8051

203

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

Result of Program 15.6:

SETI »
Input Output
Address Content |Remarks Address |Content |Remarks
60 35 ASCII value for MSD | |62 5F Hexadecimal number
61 46 ASCII value for LSD
SET2 »
I t
Anput Output
Address Content |Remarks Address | Content | Remarks
60 41 ASCII value for MSD 62 Al Hexadecimal number
61 31 ASCII value for LSD

15.7: Write a program to convert an 8-bit Hexadecimal number stored at RAM location 50H to
its equivalent gray code which will be stored at RAM location 51H.

To determine the corresponding gray code of a binary number the rule is to take the MSB of the
binary number unchanged and all the other bits of the gray code is achieved by performing EXOR
operation between two consecutive bits of the binary number. If an 8-bit binary number is
represented as B;BsBsB4B3;B,BB,, then the corresponding gray code can be determined as follows.

G7:0®B7:B7 G3:B4®B3
G6:B7 @ B6 G2:B3 @ Bz
G5:B6®B5 G1:B2®B1
G4:B5 @ B4 Go:Bl @ Bo

The above mentioned process can be implemented by right shifting the binary number one bit
position, which appends a zero at the MSB position and then performing bit-wise XOR operation
between the actual binary number and the right shifted version of the binary number as shown
below.

Binary Number — B7 B5 B5 B4 B3 Bz B1 Bo
)) 52 S D S) @
Right shifted Binary Number — 0 B, Bs Bs Bs By B, B

Gray Code — G7 G6 Gs G4 G3 Gz G1 Go

Department of Electronics & Communication Engineering
8051 204

College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

Assembly Language Program 15.7:

SL. Label Instructions of 8051
1 MOV RO,#50H
2 MOV A,@RO
MOV B,A
CLR C
4 RRCA
5 XRLA,B
6 INC RO
7 MOV @RO0,A
8 HERE SIMP HERE
Result of Program 15.7:
SETI »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 25 8-bit Hex Number 51 37 8-bit Gray Code
SET2 »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 C2 8-bit Hex Number 51 A3 8-bit Gray Code

15.8: Write a program to convert an 8-bit gray code stored at RAM location 50H to its equivalent
hexadecimal code which will be stored at RAM location 51H.

Suppose an 8-bit gray code is denoted as G;GsGsG4G3G.G1Go. Now this gray code can be converted
to corresponding binary number using the following process.

B7=0@G7=G7 B3=B4@G3
B6:B7®G6:G7®G6 B2:B3®G2
B5=B6@G5 B1=B2@G1
B4:B5®G4 B0:B1®Go

Department of Electronics & Communication Engineering

8051 205

P ‘% College of Engineering and Management, Kolaghat.

o

A CH 15: Programs on Data Conversion

The above expressions to convert gray to binary are shown pictorially in Fig-6.1 for 4-bit

representation. Gray Code g3 g2 al g

0
b b2 b1 bl

Binary Code .
gd MIEX-OR gl (b2 EX-ORgl) (bl EX-OR g8}

Fig-6.1: Gray to binary conversion

It is being observed that any bit in the converted binary number depends on the previous binary bit.
Due to this reason B binary bit can not be determined unless B, bit is calculated, Bsbit can only be
determined after the evaluation of Bs bit and so on. In this program a loop is iterated for 7 times to
convert the gray code to binary as shown below.

Iteration 1:

Gray code — G7 Ge G5 G4 G3 G2 G] G()
@ S S @ @ @ > 52
Right shifted Gray code — 0 G G G G G G G

Binary codel —>G7 = B7 B6 D5 D4 D3 D2 D] D()

1 1 7 T 1 1 1 1
Valid Valid Invalid Invalid Invalid Invalid Invalid Invalid

Iteration 2:

Gray code — G7 G(, G5 G4 G3 Gz G] G()
@ S S S @ @ > @
Right shifted Binary codel — 0 B, B¢ Ds Ds Ds D, D

Binary code2 —>G7 = B7 B() B5 D4 D3 Dz D] D()

1 T T 1 T T 1 1
Valid Valid Valid Invalid Invalid Invalid Invalid Invalid

Iteration 3:

Gray code — G7 G6 G5 G4 G3 Gz G1 G()
@ S S @ @ @ > @
Right shifted Binary code2 — 0 B, B¢ Bs Ds D;s D, D

Binary code3 —>G7 = B7 B6 B5 B4 D3 Dz D1 D()

) 7 7 1 1)))
Valid Valid Valid Valid Invalid Invalid Invalid Invalid

Department of Electronics & Communication Engineering
8051 206

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

[teration 4:

Gray code — G7 Ge G5 G4 G3 G2 G1 Go
2] S S 5] 5] 2] @ 2]
Right shifted Binary code3 — 0 B, B¢ Bs Bs D; D, D

Binary code4 —>G7 = B7 B6 B5 B4 B3 D2 D] D()

1 1 1 1 1 1 1 1
Valid Valid Valid Valid Valid Invalid Invalid Invalid

Iteration 5:

Gray code — G7 G6 G5 G4 G3 Gz G1 Go
@ @ @ @ @ @ @ SY
nght shifted Binary coded4 — 0 B7 B5 B5 B4 B3 Dz D1

Binary codes —>G7 = B7 B6 B5 B4 B3 Bz D1 Do

1 1 1 1 1 1 1 1
Valid Valid Valid Valid Valid Valid Invalid Invalid

Iteration 6:

Gray code — G7 G6 Gs G4 G3 Gz G1 Go
D 52 52 D D D S D
Right shifted Binary code5 — 0 B, Bs Bs Bs B; B, D

Binary COde6 —>G7 = B7 B6 B5 B4 B3 Bz B1 Do

7 1 1 1 T 7 T T
Valid Valid Valid Valid Valid Valid Valid Invalid

Iteration 7:

Gray code — G7 Ge Gs G4 G3 Gz G1 Go
D D D D D D D D
Right shifted Binary code6 — 0 B, Bs Bs Bs B:; B, B

Binary code?7 —>G7 = B7 B6 B5 B4 B3 Bz B1 Bo

T 1 T T T 7 7 T
Valid Valid Valid Valid Valid Valid Valid Valid

It is being observed clearly that the Binary code7 thus achieved finally after 7" iteration is valid.

Department of Electronics & Communication Engineering
8051 207

.

JuAs% College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

Assembly Language Program 15.8:

SL. Label Instructions of 8051
1 MOV RO,#50H
2 MOV A,@RO0
3 MOV R2,A
4 MOV R3,#07H
REPEAT CLRC
5 RRC A
6 XRLA,R2
7 DINZ R3,REPEAT
8 INC RO
9 MOV @RO0,A
10 HERE SIMP HERE
Result of Program 15.8:
SETI »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 37 8-bit Gray code 51 25 8-bit hexadecimal number
SET2 »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 A3 8-bit Gray code 51 C2 8-bit hexadecimal number

Department of Electronics & Communication Engineering

8051

208

College of Engineering and Management, Kolaghat.
CH 15: Programs on Data Conversion

15.9: Write a program to add two 8-bit BCD numbers stored at memory locations 50H and 51H
respectively. Store the result of the BCD addition at memory locations 52H and 53H respectively
where 52H will hold the lower byte of the result and 53H will hold the higher byte of the result.

In this program two BCD numbers stored at RAM locations 50H and 51H are added together. As
the maximum value of 2-digit BCD number is 99, the maximum result of BCD addition will be 198
here. Although we are considering the BCD numbers, but a BCD number is basically a hexadecimal
number to 8051 microcontroller. For example the BCD number 99 is naturally considered as 99H
by the microcontroller. Therefore the addition of two BCD numbers such as (99 + 99) is basically
the addition of two hexadecimal numbers such as (99H + 99H) which gives 132H. But we should
get the BCD number 198 as a result of BCD addition. To convert 132H to our desired result (198H)
the instruction “DA A” (Decimal Adjust Accumulator) should be used just after performing addition
between 99H and 99H using the instruction “ADD”, because we know “DA A” converts the result
of two BCD addition into a BCD number. For example - if we add two BCD numbers 15 and 18,
then we get the following results.

BCD Addition We get the following
15 15
18 18
33 2D

Desired Result Wrong Result

From the above example it is clear that the result of the BCD addition may be incorrect. DAA
instruction rectifies this error and generate the correct result in BCD. In the above example if DAA
is used after the addition, it will give 33 as a result. Here one thing is important to mention that
DAA instruction should be used after ADD instruction.

Assembly Language Program 15.9:

SL. Label Instructions of 8051
MOV B,#00H

MOV RO,#50H

MOV A,@RO

INC RO

ADD A,@RO

DA A

JNC NOCARRY

INCB

I || N | |W|IN |~

Department of Electronics & Communication Engineering
8051 209

College of Engineering and Management, Kolaghat.

CH 15: Programs on Data Conversion

SL. Label Instructions of 8051
9 NOCARRY INC RO
10 MOV @RO0,B
11 INC RO
12 MOV @RO0,A
13 HERE SIMP HERE
Result of Program 15.9:
SETI »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 34 2 digit BCD Nol 52 00 Higher Byte of Result
51 15 2 digit BCD No2 53 49 Lower Byte of Result
SET2 »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 98 2 digit BCD Nol 52 01 Higher Byte of Result
51 97 2 digit BCD No2 53 95 Lower Byte of Result

15.10: Write a program to add two 32-bit BCD numbers stored from memory locations 50H
onward and 54H onward respectively. Store the result of the BCD addition from memory
locations 58H onward where 58H will hold the least significant byte of the result and 5CH will

hold the most significant byte of the result.

Here 1% 32-bit BCD number will occupy 4 consecutive locations starting from 50H to 53H and 2™
32-bit BCD number will occupy 4 consecutive locations starting from 54H to 57H. After the BCD
addition the result will be 5 bytes long, so it will be stored into 5 consecutive RAM locations
starting from 58H to SCH. 5CH location will hold the most significant byte of the result which is
basically the carry of the BCD addition and 58H memory location will hold the least significant

byte of the result.

Department of Electronics & Communication Engineering

8051

f&% College of Engineering and Management, Kolaghat.
N7

CH 15: Programs on Data Conversion

The 1* bytes from both numbers are added and converted to BCD using “DA A” instruction, then
2" bytes from both numbers are added along with the carry from 1* BCD addition and converted to
BCD using “DA A” instruction, after that 3™ bytes are added along with the carry from 2™ BCD
addition and converted to corresponding BCD and finally 4™ bytes from both numbers are added
along with the carry from 3™ BCD addition and converted to BCD to achieve the 5 bytes long
result. Hence the BCD addition is performed 4 times and to implement this, a loop should be
iterated for 4 times as given in the following program.

Assembly Language Program 15.10:

SL. Label Instructions of 8051
1 MOV R3,#50H
2 MOV R4, #54H
3 MOV R1,#58H
4 MOV R2,#04H
5 CLR C
6 REPEAT MOV B,R3
7 MOV RO,B
8 MOV A,@RO0
9 MOV B,R4
10 MOV R0O,B
11 ADDC A,@RO0
12 DAA
13 MOV @RI1,A
14 INCR3
15 INC R4
16 INCRI1
17 DINZ R2,REPEAT
18 XRLAA
19 ADDC A, #00H
20 MOV @RI1,A
21 HERE SJIMP HERE

Department of Electronics & Communication Engineering
8051 211

&% College of Engineering and Management, Kolaghat.
= CH 15: Programs on Data Conversion

Result of Program 15.10:

SETI »
Input Output
BCD Nol BCD No2 Result
Addr |Content [Remarks| |Addr |Content |Remarks Addr |Content |Remarks
50 66 Bytel 54 99 Bytel 58 65 Bytel
51 77 Byte2 55 88 Byte2 59 66 Byte2
52 88 Byte3 56 77 Byte3 5A 66 Byte3
53 99 Byte4 57 66 Byte4 5B 66 Byte4
5C 01 Byte5
SET2 »
ot Nol No2 Output Result
Addr |Content [Remarks| |Addr |Content |Remarks Addr |Content |Remarks
50 44 Bytel 54 17 Bytel 5g 61 Bytel
51 89 Byte2 55 20 Byte2 59 09 Byte2
52 57 Byte3 56 49 Byte3 SA 07 Byte3
53 12 Byte4 57 52 Byte4 5B 65 Byted
5C 00 Byte5
Exercise

1) Write a program to convert a 2-digit packed BCD number stored at SOH to its equivalent packed
Excess 3 codes which should be placed at RAM location 51H.
[Example: Packed 2-digit BCD: 92 — Packed 2-digit Excess 3 Code: C5]

2) Write a program to convert a 2-digit packed Excess 3 code stored at SOH to its equivalent 2-digit
packed BCD number which should be placed at RAM location 51H.

Department of Electronics & Communication Engineering
8051 212

College of Engineering and Management, Kolaghat.
CH 16: Programs on Look up Table

16. Programs on Look up Table

16.1: Write a program to determine the square of a number which is stored at RAM location 50H

using Look up Table. Also store the square of the number at RAM location 51H.

Although the square of a number can be evaluated by multiplying the number with itself, but here
the square of a number is determined by using look up table to develop the concept of the look up
table. Here a portion of the program memory has been used to store the square of the numbers 00H
to OFH. We can not store the square of a number beyond OF (15 in Decimal), because it exceeds the
maximum range of a 8-bit number, FFH (255 in Decimal). In this program the look up table has
been started from the memory location 400H onward in the code memory or the program memory
of 8051 microcontroller as shown below.

Look up Table
Program Memory Square of 8-bit number
Address
400H 00H (0) «—square of 0
401H 01H (1) «—square of 1
402H 04H (4) «—square of 2
403H 09H (9) «—square of 3
404H 10H (16) «—square of 4
405H 19H (25) «—square of 5
406H 24H (36) «—square of 6
407H 31H (49) «—square of 7
408H 40H (64) «—square of 8
409H 51H (81) «—square of 9
40AH 64H (100) «—square of 10
40BH 79H (121) «—square of 11
40CH 90H (144) «—square of 12
40DH A9H (169) «—square of 13
40EH C4 (196) «—square of 14
40FH E1H (225) «—square of 15

The above mentioned square of numbers 00H — OFH will be stored from 400H — 40FH into the
flash memory of 8051 microcontroller using the following assembler directives at the end of the

program in Keil.

Department of Electronics & Communication Engineering

8051

213

% College of Engineering and Management, Kolaghat.

CH 16: Programs on Look up Table

ORG 0400H

DB 00H,01H,04H,09H,10H,19H,24H,31H,40H,51H,64H,79H,90H,0A9H,0C4H,0E1H

To get the square of a number, that particular number is added with the starting address of the look
up table to get the memory location where the square of that number is saved. Now the content of
that memory address is retrieved to get the square of the number. To retrieve the square number
from Look up table into code/ program memory the instruction “MOVC A,@A+DPTR” will be
used, where DPTR will hold the starting address of the look up table and the number whose square
is to be determined will be stored into accumulator. (A + DPTR) will give the address where the
square of a given number is stored. After the execution of “MOVC A,@A+DPTR” the accumulator

will hold the square value which will be stored at the desired memory location.

Assembly Language Program 16.1:

SL. Label Instructions of 8051
1 MOV RO, #50H
2 MOV A,@R0O
3 MOV DPTR,#400H
4 MOVC A,@A+DPTR
5 INC RO
6 MOV @RO0,A
7 HERE SIMP HERE
Result of Program 16.1:
SETI »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 09 Number 51 51 Square of the number
SET2 »
Input Output
Mem. Address |Content |Remarks Address |Content |Remarks
50 OF Number 51 El Square of the number

Department of Electronics & Communication Engineering
8051

Exercise

1) Suppose a Common Cathode 7-segment display is connected to Port2 of 8051 microcontroller

via a 74373 latch which is made enabled already by setting LE pin high. The different pins of the
7-segment display is connected to the Port2 as follows.

P,y — a segment

P>, — b segment

P,> — c segment

P,3; — d segment

P,4+ — e segment

P,s — fsegment

P,s — g segment

P,7 — h dot point

Now write a program to convert a single digit BCD number stored at memory location 50H to its
equivalent 7 segment display code using look up table and send the 7-segment equivalent code
through Port2 to show the BCD number on the 7-segment display.

2) Suppose a Common Anode 7-segment display is connected to Port2 of 8051 microcontroller via

a 74373 latch which is made enabled already by setting LE pin high. The different pins of the 7-
segment display is connected to the Port2 as follows.

P,y — a segment

P, — b segment

P,> — c segment

P,3; — d segment

P,4+ — e segment

P,s — fsegment

P,s — g segment

P,7 — h dot point

Now write a program to convert a single digit BCD number stored at memory location 50H to its
equivalent 7 segment display code using look up table and send the 7-segment equivalent code
through Port2 to show the BCD number on the 7-segment display.

Department of Electronics & Communication Engineering
8051 215

f:‘\"’g College of Engineering and Management, Kolaghat.

= CH 17: Programs on String Manipulation

17. Programs on String Manipulation

17.1: Suppose a string is stored from memory location 50H to 57H. Write a program to reverse
the string and store the reversed string starting from 60H onward.

Suppose a string “0123456789 ABCDEF” is stored from memory location 50H to 57H as shown in
Fig-8.1. After the execution of the program the string will be reversed and the reversed string
“FEDCBA9876543210” will be stored starting from 60H onward as shown in Fig-8.2.

Mem. Address |Content Mem. Address Content
50 01 60 FE

51 23 61 DC

52 45 62 BA

53 67 63 98

54 89 64 76

55 AB 65 54

56 CD 66 32

57 EF 67 10

Fig-8.1: Source string Fig-8.2: Reversed string

Here every 8-bit data is to be copied starting from memory location 57H to accumulator, swap the
nibbles of the accumulator by using SWAP A instruction and save the swapped data starting from
memory location 60H onward. That means the source string should be copied from memory
location 57H to S0H and the reversed string should be stored from memory location 60H to 67H.

Assembly Language Program 17.1:

SL. Label Instructions of 8051
1 MOV R2 #0AH
2 MOV RO,#57H
3 MOV R1,#60H
4 REPEAT MOV A,@RO
5 SWAP A
6 MOV @RI1,A

Department of Electronics & Communication Engineering
8051 216

College of Engineering and Management, Kolaghat.

CH 17: Programs on String Manipulation

SL. Label Instructions of 8051
7 DEC RO
INCRI1
9 DINZ R2,REPEAT
10 HERE SJMP HERE

Result of Program 17.1:

SETI »
Input

Source String

Output

Reversed String

Mem. Address |Content |Remarks Mem. Address |Content |Remarks
50 01 60 FE
51 23 61 DC
52 45 62 BA
53 67 63 98
54 89 64 76
55 AB 65 54
56 CD 66 32
57 EF 67 10
SET2 »
Input Output
Source String Reversed String
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
50 1F 60 88
51 2E 61 97
52 3D 62 A6
53 4C 63 B5
54 5B 64 C4
55 6A 65 D3
56 79 66 E2
57 88 67 F1

Department of Electronics & Communication Engineering

8051

217

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

17.2: Suppose a string is stored from memory location 50H to 57H. Write a program to check
whether the string is palindrome or not. If the string is palindrome, 01H should be stored at
memory location 58H, otherwise 00H should be stored in the same memory location.

A string is said to be palindrome when it matches exactly with its reversed form. For example — a
string “ABCDEF99FEDCBA” is palindrome, because if it is written in reverse order it will be the
same string “ABCDEF99FEDCBA”. Now for 8051 microcontroller a string always consists of even
no. of characters, because each memory location stores 8-bit data which includes two characters.
Hence for 8051 it is not possible to store a string which comprises odd no. of characters. Now the
question arises how to check it. One thing is important to observe that every pair of characters from
starting position is just reverse of the pair of characters from end position. In case of the above
string “ABCDEF99FEDCBA” AB from starting positions is just reverse of BA from end position.
Similarly CD is reversed of DC and EF is also reversed form of FE.

Here two cases may arise — 1) no. of memory locations consumed by the string is even and 2) no. of
memory locations consumed by the string is odd. This implies that every pair of characters is
reversed and compared with its counterpart pair of characters up to n/2 for even no. of memory
locations and (|n/2]+1) for odd no. of memory locations where n is the no. of memory locations
consumed by the string. For examples - the string “ABCDEF99FEDCBA” takes 7 (odd)
consecutive memory locations. That’s why the checking has to be performed up to 4™ memory
location. At any stage if the reversed pair of characters does not match with its corresponding pair
of characters, the string will not be palindrome. If the reversed pair of characters matches with its
corresponding pair of characters up to n/2 or (|n/2]+1), the string will be a palindrome.
According to the condition of the program O01H will be stored at the memory location 58H, if the
string is palindrome and O0OH will be stored if the string is not palindrome. In this program the
string occupies 8 consecutive memory locations. That’s why the comparisons will be carried out up

to n/2 no. of pair of characters and to accomplish this the counter register should be initialized with
4 (8/2).

Assembly Language Program 17.2:

SL. Label Instructions of 8051
MOV R2,#04H

MOV RO,#50H

MOV R1,#57TH

REPEAT MOV A,@RO

SWAP A

MOV B,@R1

CINE A,.B,NOTEQUAL

N N[N | B | WIN -

Department of Electronics & Communication Engineering
8051 218

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

INCRO

9 DECRI1

10 DINZ R2, REPEAT

11 MOV A#01H

12 MOV 58H,A

13 SJMP HERE

14 NOTEQUAL |MOV A #00H

15 MOV 58H,A

16 HERE SIMP HERE

Result of Program 17.2:

SETI »
Input Output
Source String
Mem. Address |Content |Remarks Mem. Address |Content |Remarks
50 AB 58 01 Palindrome
51 CD
52 EF
53 12
54 21
55 FE
56 DC
57 BA

Department of Electronics & Communication Engineering

8051

219

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SET2 » Output
Input
Source String
Mem. Address |Content |Remarks Mem. Address |Content | Remarks
50 AB 58 00 Not Palindrome
51 CD
52 EF
53 12
54 34
55 FE
56 DC
57 BA

17.3: Write a program to check whether a string stored from RAM location 50H onward contains
another sub-string stored from RAM location 60H onward or not. Store 01H into the memory
location 70H if the main string contains the sub-string, otherwise store 02H into the same
memory location.

Here one string known as main string is stored from the memory location 50H and another string
known as sub-string is stored starting from memory location 60H. Obviously the length of the sub-
string will be less or equal to the length of the main string. Here four cases may happen.

Case 1: In this case no matching happens between the main string and sub-string. For example — if
the main string is “1234567890ABCDEF9988” and the sub-string is “2233445566”, it is observed
that there is no matching between the main string and the sub-string. Therefore 02H should be
stored into the memory location 70H to indicate the mismatch between the two strings.

Case 2: Here partial matching occurs between the main string and the sub-string. For example — if
the main string is “1234567890ABCDEF9988” and the sub-string is “ABCDEF1122”, it is
observed that a portion of sub-string “ABCDEF” is found into the main string. As entire sub-string
is not found into the main string, it results mismatch between the main string and the sub-string.
Therefore 02H will be stored into the memory location 70H.

Department of Electronics & Communication Engineering
8051 220

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

Case 3: In this case the entire sub-string is found into the main string which results successful
matching between the two strings. Hence 01H should be stored in the memory location 70H. For
example — complete matching occurs if the main string becomes “ 1234567890ABCDEF9988” and
the sub-string is “ABCDEF9988”.

Case 4: This case consists of both partial matching and complete matching. As complete matching
is found finally, O1H will be stored into the same memory location according to the program
criteria. For example — if main string is “ 12ABCD7890ABCDEF9988” and the sub-string is
“ABCDEF9988”, then partial matching occurs for “ABCD” from 2™ position whereas complete
matching happens for “ABCDEF9988” from 6™ position.

Now these above mentioned four cases must be handled in the program to check the matching of
two strings. If the no. of 8-bit data in the main string is m and the no. of 8-bit data in the sub-string
is n, then there will be no chance of finding the whole sub-string inside the main string beyond (m —
n + 1)th data. Therefore we have to compare up to (m — n + 1)th data in the main string, beyond of
that there is no chance to get the entire sub-string into the main string. The following example will
clearly demonstrate this situation.

Suppose main string “1234567890ABCDEF8899” has 10 no. of 8-bit data and sub-string
“ABCDEF8899” has 5 no. of 8-bit data. Therefore we have to search for matching of data up to 6™
(10 -5 + 1) position i.e. up to the data “AB” into the main string, because beyond of that there is no
possibility to get the complete matching of sub-string “ABCDEF8899”.

Here 1% 8-bit data of the sub-string is started to be compared with all the 8-bit data of main string
consecutively from 1% data to (m — n + 1)th data of the main string. If matching is found at any
stage, the rest of the data from the sub-string are compared with the data of the main string
consecutively. That means, if the 1% data of sub-string is matched with any data of main string, then
the comparisons between the pairs of the data — one from sub-string and other from main string are
performed successively until the end of the sub-string or a mismatch is found. If every pair of data
from the sub-string and the main string are matched perfectly, then it can be concluded that the sub-
string is found into the main string and if any mismatch is found, then the 1* data from sub-string
and the the data of main string where mismatch was found should be compared once again to get
the entire sub-string inside the remaining part of the main string. Here one important point to
consider that if mismatch is found after (m — n + 1)th data of the main string, then comparisons are
not carried out further to imply the absence of the sub-string inside the main string.

In the following program we have taken a main string with 10 no. of data and the sub-string with 5
no. of data. Therefore comparisons should continue up to 6™ data of the main string. To fulfill this
purpose register R2 will act as counter of main string and initialized with 06H. Similarly register R3
is used as counter of sub-string and initialized with O5H. In addition to this, register RO has been
used as memory pointer of main string and register R1 has been used as memory pointer for sub-
string in this program. If a match is found, register R2 and R3 both will be decremented by one for
every iteration, otherwise register R2 only will be decremented by one for each iteration. There are
two loops in this program — one is controlled by the counter register R2 and other is controlled by

Department of Electronics & Communication Engineering
8051 221

ffg% College of Engineering and Management, Kolaghat.
Ned 74

CH 17: Programs on String Manipulation

the counter register R3. The loop of counter register R2 will continue until a matching between the
1* data from the sub-string and any data [up to (m —n + 1)th data] from the main string is found. On
the other hand if a matching is found, then the loop of counter register R3 will be initiated. If the
loop of register R3 is terminated by decreasing R3 to zero, it is clear that the sub-string is found
inside the main string and if the loop of register R2 is terminated for R2 = 0, then the sub-string is
not found into the main string.

Assembly Language Program 17.3:

SL. Label Instructions of 8051
1 MOV R2,#06H
2 MOV RO,#50H
3 MOV R1,#60H
4 REPEAT MOV A,@RO
5 MOV B,@R1
6 CINE A,.B,NOTEQUAL
7 MOV R3,#05H
8 AGAIN MOV A,@R0O
9 MOV B,@R1
10 CINE A,B,INEQAFTERMATCH
11 INC RO
12 INCRI1
13 MOV A,R2
14 CINE A,#01H,AFTER
15 AFTER JC BYPASS
16 DEC R2
17 BYPASS DINZ R3,AGAIN
18 MOV A#01H
19 SIMP FINAL
20 INEQAFTERMATCH |DEC RO
21 INC R2

Department of Electronics & Communication Engineering
8051 222

JuAs% College of Engineering and Management, Kolaghat.

Y.

CH 17: Programs on String Manipulation
SL. Label Instructions of 8051

22 MOV R1,#60H

23 NOTEQUAL INC RO

24 DJNZ R2,REPEAT

25 MOV A #02H

26 FINAL MOV 70H,A

27 HERE SIMP HERE

Result of Program 17.3:
SETI » (Corresponds to Case 1)

Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 02 Sub-string not found
51 34 61 CD
52 56 62 EF
53 78 63 88
54 87 64 99
55 65
56 43
57 21
58 CD
59 EF

Department of Electronics & Communication Engineering
8051 223

College of Engineering and Management, Kolaghat.

CH 17: Programs on String Manipulation

SET2 » (Corresponds to Case 1)
Input Output
Main String Sub-String

Address |Content Address |Content Address|Content |Remarks
50 12 60 AB 70 02 Sub-string not found
51 34 61 CD
52 56 62 EF
53 78 63 88
54 87 64 99
55 65
56 AB
57 CD
58 EF
59 88

SET3 » (Corresponds to Case 2)

Input Qutput
Main String Sub-String

Address |Content Address |Content Address |Content | Remarks
50 12 60 AB 70 02 Sub-string not found
51 34 61 CD
52 56 62 EF
53 78 63 88
54 AB 64 99
55 CD
56 AB
57 CD
58 EF
59 88

Department of Electronics & Communication Engineering

224

College of Engineering and Management, Kolaghat.

CH 17: Programs on String Manipulation

SET4 » (Corresponds to Case 2)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 02 Sub-string not found
51 34 61 CD
52 AB 62 EF
53 CD 63 88
54 56 64 99
55 78
56 87
57 EF
58 88
59 99
SET5 » (Corresponds to Case 2)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 02 Sub-string not found
51 34 61 CD
52 56 62 EF
53 AB 63 88
54 CD 64 99
55 AB
56 AB
57 CD
58 EF
59 88

Department of Electronics & Communication Engineering

225

College of Engineering and Management, Kolaghat.

CH 17: Programs on String Manipulation

SET6 » (Corresponds to Case 3)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 01 Sub-string found
51 34 61 CD
52 56 62 EF
53 78 63 88
54 87 64 99
55 AB
56 CD
57 EF
58 88
59 99
SET7 » (Corresponds to Case 3)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 AB 60 AB 70 01 Sub-string found
51 CD 61 CD
52 EF 62 EF
53 88 63 88
54 99 64 99
55 12
56 34
57 56
58 78
59 87

Department of Electronics & Communication Engineering

226

College of Engineering and Management, Kolaghat.

CH 17: Programs on String Manipulation

SETS » (Corresponds to Case 4)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 01 Sub-string found
51 AB 61 CD
52 CD 62 EF
53 AB 63 88
54 CD 64 99
55 EF
56 88
57 99
58 34
59 56
SET9 » (Corresponds to Case 4)
Input Output
Main String Sub-String
Address |Content Address |Content Address |Content |Remarks
50 12 60 AB 70 01 Sub-string found
51 34 61 CD
52 56 62 EF
53 AB 63 88
54 CD 64 99
55 AB
56 CD
57 EF
58 88
59 99

Department of Electronics & Communication Engineering

227

f:‘\"’g College of Engineering and Management, Kolaghat.

= CH 17: Programs on String Manipulation

17.4: Suppose two strings are stored into two memory blocks - 50H to 59H and 60H to 63H
respectively. Write a program to insert the second string into the first string starting from the
memory location 53H.

It can be observed that the second string stored from 60H to 63H has four 8-bit data and the first
string stored from 50H to 59H has ten 8-bit data. To insert the second string at the memory location
53H of the first string, all the data of RAM locations starting from 53H to 59H must be shifted into
the memory locations 57H to SDH first to make a space of 4 bytes so that the second string can be
accommodated into that memory space. After shifting the data the entire second string should be
copied from the memory locations 60H to 63H into the memory locations 53H to 56H.

Now to make a space of four consecutive memory locations starting from 53H to 56H, seven 8-bit
data of first string from the memory locations 53H to 59H should be shifted to the memory
locations 57H to SDH. Hence register R2 has been considered as a counter and initialized with 07H.
After shifting these seven data, the four 8-bit data of the second string stored from the memory
location 60H to 63H should be copied into the memory locations 53H to 56H. Again the register R2
will be initialized with 04H to act as a counter and will be used to transfer these four data. Thus the
second string will be inserted into the first string from the memory location 53H.

Assembly Language Program 17.4:

SL. Label Instructions of 8051
MOV R2,#07H
MOV RO,#59H
MOV R1,#5DH
REPEAT MOV A,@RO
MOV @R1,A
DEC RO

DECRI1

DINZ R2,REPEAT
MOV R2#04H
MOV R1,#60H
AGAIN INCRO

MOV A,@R1
MOV @RO0,A

INC R1

O [0 | I | NN | B |W ||

—
(=]

—
—_—

—
\S)

—_
(98]

._
N

Department of Electronics & Communication Engineering
8051 228

College of Engineering and Management, Kolaghat.
CH 17: Programs on String Manipulation

SL. Label Instructions of 8051

15 DINZ R2,AGAIN

16 HERE SIMP HERE

Result of Program 17.4:

SETI »
Input Output
1* String 2™ String
Address |Content Address |Content Address | Content
50 11 60 BB 50 11
51 22 61 CC 51 22
52 33 62 DD 52 33
53 44 63 EE 53 BB
54 55 54 CC
55 66 55 DD
56 77 56 EE
57 88 57 44
58 99 58 55
59 AA 59 66
5A 77
5B 88
5C 99
5D AA

Department of Electronics & Communication Engineering
8051 229

f:‘\"’g College of Engineering and Management, Kolaghat.

= CH 17: Programs on String Manipulation

SET2 »
Input Output
1* String 2" String
Address |Content Address |Content Address |Content
50 12 60 BC 50 12
51 23 61 CD 51 23
52 34 62 DE 52 34
53 45 63 EF 53 BC
54 56 54 CD
55 67 55 DE
56 78 56 EF
57 89 57 45
58 9A 58 56
59 AB 59 67
S5A 78
5B 89
5C 9A
5D AB
Exercise

1) Write a program to check whether two strings are identical or not. Consider the two strings
having same length of 16 characters are stored from memory location 50H onward and 60H
onward respectively.

2) Write a program to replace all the characters ‘A’ with the character ‘D’ in a string which is stored
from the memory location 40H onward.

3) Suppose two strings are stored into two memory blocks - 50H to 59H and 60H to 65H
respectively. Write a program to concatenate these two strings and store the concatenated string
starting from memory location SO0H onward

Department of Electronics & Communication Engineering
8051 230

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

18. Programs of Interfacing with LEDs

18.1: Write a program for 8051 microcontroller to blink a set of 8 LEDs connected to Port 2 with
some patterns considering the dalay time of 1 second.

Eight LEDs are connected to Port 2 of 8051 microcontroller with current limiting resistors of 270€.
The power supply +5V is delivered to the 8051 mounting board KSR85152-MBI1 as well as the
LED circuits by the USB power supply of PC. That’s why the microcontroller 8051 is burnt here
first using USBASP programmer disconnecting the RESET circuit with only JP4 jumper open and
then all the jumpers JP1, JP2, JP3, JP4 in the 8051 mounting board are made shorted to execute the
dumped program with +5V supply from USBASP programmer. The circuit diagram during the
execution of the flashed program into the program memory of 8051 is shown in Fig-18.1.

KSRE05152-MBI
P El

zﬁz YYVYY ¥
?

L]

Fig-18.1: Circuit diagram of LED interfacing with 8051 after burning the program

Here two 8-bit patterns of 55H and AAH to glow the LEDs are followed with a time delay of 1
second. That means, the LEDs will glow with a pattern 55H and AAH alternately with a delay of 1
second. Now to create 1 second time delay, a delay subroutine should be written in assembly
language. This delay subroutine can be written in two ways — either by using instructions of 8051 or
by using in-built Timer of 8051. The delay subroutine of 1 second using the instructions of 8051
along with its calculation is given below in Method 1.

Department of Electronics & Communication Engineering
8051 231

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Method 1: Delay Subroutine using the instructions of 8051

Label Instructions of 8051 No. of Machine Cycle
MOV R2, #n 1

L2: MOV R3, #255
L3: MOV R4, #255
L4: DINZ R4, L4
DINZ R3, L3
DINZ R2, L2
RET

N[NNI N — | =

For 8051 microcontroller 1 machine cycle (MC) = 12 x Tosc = 12 / fosc, where fosc is the operating
frequency of 8051 or the frequency of the crystal connected to 8051. In our case fosc = 11.0592
MHz. Therefore here 1 machine cycle = 1.085 ps.

In the above subroutine three nested loops are used. The inner-most loop (DJNZ R4, L4) will be

iterated for 255 times, the loop (DJINZ R3, L3) including the inner-most loop will execute for 255

times and the outer-most loop (DJNZ R2, L2) including the two inner loops will execute x times.

Total no. of MCs taken by the subroutine =1 + ((1+ ((1 + (255 x 2) +2) x 255) +2) X n) + 2
=130818 xn+3

Now total time taken by the subroutine = (130818 x n +3) % 1.085 ps which will be equal to 1
second.

So, (130818 x n+3) x 1.085 = 10°
or, (130818 x n+3) = 921659
son=7
If we replace n by 7 in the subroutine, it will generate 1 second delay when it will be executed for 1
time. To create 1 second delay this subroutine will be called using the instruction “ACALL

DELAY”. Now the entire 8051 program is written below including the above mentioned delay
subroutine.

Department of Electronics & Communication Engineering
8051 232

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Assembly Language Program 18.1 (Method 1):

SL. Label Instructions of 8051
MOV A, #55H
AGAIN: MOV P2, A
ACALL DELAY
CPLA

SIMP AGAIN
DELAY: MOV R2, #7

L2: MOV R3, #255
L3: MOV R4, #255
L4: DINZ R4, 14
DINZ R3,L3
DINZ R2, L2

12 RET

—_—

O [0 [Q| |n | |W]|DN

—_
=

—_—
p—

Method 2: Delay subroutine using Timer of 8051

8051 has two timers, Timer 0 and Timer 1. They can be used as timer or event counter. The purpose
of timer is to create a delay very accurately where as the counter will count the no. of pulses coming
at the pin TO (pin no. 14) or T1 (pin no. 15) of 8051 microcontroller. Timer 0 and Timer 1 both are
16 bit wide. 16 bit register of Timer 0 can be accessed as lower byte and higher byte whereas the
lower byte register is called TLO and the higher byte register is called THO. Similarly lower byte
register and higher byte register of Timerl are called TL1 and TH1 respectively. There are four
modes of timer namely Mode 0, Mode 1, Mode 2 and Mode 3. Among these four modes we are
interested to Mode 1 in our laboratory purpose. Mode 1 of timer is also called 16-bit timer mode. In
Mode 1 THO and TLO of Timer 0 together hold the 16-bit initial value from where Timer O starts to
increase its value i.e. with each clock pulse the 16-bit value of Timer 0 will be incremented by one.
Timer 0 is started by making the bit TRO inside TCON register high. In this way the value of Timer
0 will reach to FFFFH. With one more clock pulse the value of Timer 0 becomes 0000H from
FFFFH. This incident is called roll over of the timer. When the roll over happens, a bit TFO inside
TCON register transits from low to high. The program should check the status of this bit TFO
continuously. As soon soon TFO becomes high, the Timer 0 is to be stopped by making TRO low.
The same above mentioned incidents are happened for Timer 1 also.

Now the value of a timer takes (12 X Tosc) time to be incremented by 1. If the crystal frequency is
11.0592 MHz, (12 % Tosc) will be equal to 1.085 ps. This implies that the timer will take 1.085 x p
us time to be incremented for p times. The value of p depends on the initial value of the timer. If the

Department of Electronics & Communication Engineering
8051 233

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

timer is initialized with n, then the timer will be incremented for (65535 — n +1) times. Here the
timer will take (65536 —n) x 1.085 us which will be treated as a delay.

.. Delay = (65536 —n) x 12 x Tosc

= (65536 —n)x 12 where n is the initial value and fosc is the crystal frequency

fOSC

If the delay to be created is known, then the initial value n of the timer can be determined using the
above mentioned formula. For example if fosc = 11.0592 MHz, the initial value is considered as n
and the delay to be created is 50 ms, then we get the following equation.

(65536 —n)x12

fOSC

=50 ms

or, (65536 —n) x 1.085 ps = 50 x 10° ps
or, 65536 —n = 46083 -.n=19453 =4BFDH

Therefore the initial value of the timer is 4BFDH. If Timer 0 is used, THO and TLO are to be loaded
with 4BH and FDH respectively. Now the modes of Timer 0 and Timer 1 can be changed with the
help of TMOD register which is given below in Fig-18.2.

TMOD: TIMER/COUNTER MODE CONTROL REGISTER. NOT BIT
ADDRESSABLE.

iTGATE [et | M | M0J|¥GATE [ot [m | MOTI

~ v

TIMER 1 TIMER 0

GATE When TRx (in TCON}) is set and GATE = 1, TIMER/COUNTERX will run only while INTx pin is high
(hardware control). When GATE = 0, TIMER/COUNTERX will run only while TRx = 1 (software
control).

Timer or Counter selector. Cleared for Timer operation (input from internal system clock). Set for Coun-
ter operation (input from Tx input pin).

Ml Mode selector bit. (NOTE 1)

MO Mode selector bit. (NOTE 1)

o

Operating Mode

0 13-bit Timer (MCS-48 compatible)

1 16-bit Timer/Counter

2 8-bit Auto-Reload Timer/Counter

3 (Timer 0) TLO is an 8-bit Tirner/Counter controlled by the standard Timer O
control bits, THO is an B-bit Timer and is controlied by Timer 1 control bits.

(Timer 1) Timer/Counter 1 stopped.

mamoo®R
_no_aoz

Fig-18.2: TMOD Register of 8051 microcontroller

Therefore from Fig-18.2 it is clear that TMOD register must be initialized with 01H to operate
Timer 0 in Model.

Department of Electronics & Communication Engineering
8051 234

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

TCON : Timer/Counter Control Register (Bit Addressable)

| TFI1 | TRI ‘ I'FO | TRO | [El ‘ ITI | [E0 ITO

TF1 TCON.7 Timer 1 overflow flag. Set by hardware when the Timer/Counter 1 overflows. Cleared by
hardware as processor vectors to the interrupt service routine.

TR1 TCON.6 Timer 1 run control bit. Set/cleared by software to turn Timer/Counter ON/OFF.

TFO TCON.5 Timer 0 overflow flag. Set by hardware when the Timer/Counter 0 overflows. Cleared by
hardware as processor vectors to the service routine.

TRO TCON.4 Timer 0 run control bit. Set/cleared by software to turn Timer/Counter 0 ON/OFF.

[E] TCON.3 External Interrupt 1 edge flag. Set by hardware when External interrupt edge is detected. Cleared

by hardware when interrupt is processed.

ITI TCON.2 Interrupt | type control bit. Set/cleared by software to specify falling edge/flow level triggered
External Interrupt.

[EO TCON.1 External Interrupt 0 edge flag. Set by hardware when External Interrupt edge detected. Cleared
by hardware when interrupt is processed.

[T0 TCON.O Interrupt 0 type control bit. Set/cleared by software to specify falling edge/low level triggered
External Interrupt.

Fig-18.3: TCON Register of 8051 microcontroller

In this program we are going to create delay of 1 second using Timer 0 in Model. The Timer 0 will
generate maximum delay when it will be initialized with O0H. Therefore with crystal frequency of
11.0592 MHz and THO = 00H and THO = 00H, the Timer 0 gives maximum delay of 71 ms which
is obviously less than our desired delay of 1 second. Therefore using Timer 0 only we can not
generate a time delay of 1 second. To solve this problem, we have to generate a delay of 50 ms
using Timer O and iterate the subroutine 20 times to create the delay of 1 second. The delay
calculation using Timer 0 is given below.

(65536 —n)x12

=50 ms [fosc = 11.0592 MHz]

fosc
or, (65536 —n) x 1.085 ps = 50 x 10° ps
or, 65536 —n = 46083
.-.n=19453 = 4BFDH
Therefore THO = 4BH, TLO = FDH and TMOD = 01H

Now the same program (already written in Method 1) is rewritten using Timer 0 in Model for delay
subroutine.

Department of Electronics & Communication Engineering
8051 235

$ College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Assembly Language Program 18.1 (Method 2):

SL. Label

Instructions of 8051

MOV P2, #55H

AGAIN: ACALL DELAY

XRL P2, #0FFH

SIMP AGAIN

DELAY MOV TMOD, #01H

MOV R2, #20

REPIT: MOV TLO, #0FDH

MOV THO, #4BH

O ([0 | I | NN | B |W ||

SETB TRO

—
o

HERE: JNB TF0, HERE

—
—_—

CLR TRO

—
\S)

CLR TFO

—_
W

DINZ R2, REPIT

,_
S

RET

C Program 18.1 (Method 2):

#include<reg51.h>
void Delay();

void main()

{

P2 = 0x55;
while(1)
{
Delay();
P2 =~P2;

Department of Electronics & Communication Engineering
8051

236

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

C Program 18.1 (Method 2):

void Delay()
{
unsigned char i;
TMOD = 0x01;
for(i=0;i<20;i++)
{
TLO = 0xFD;
THO = 0x4B;
TRO = 1;
while(TF0==0);
TRO = 0;
TFO0 = 0;
}

Method 3: Delay subroutine using interrupt of Timer for 8051

In this method the delay is created using any one of the timers (Timer 0 or Timer 1) where interrupt
happens due to the occurrence of overflow. Before explaining this timer interrupt a brief
introduction to the 8051 interrupts are given below.

8051 microcontroller has six interrupts including the reset which is not available to the programmer.

» Reset - When the reset pin is activated, 8051 jumps to the address location 0000H which is the
starting address of the interrupt vector table (IVT) of reset. This IVT of reset ends at memory
location 0002H. Therefore the size of IVT for reset is 3 bytes. Basically it is the power-up reset.

» Two interrupts for Timer 0 and Timer 1 — There are two interrupts, one for Timer 0 and other
for Timer 1 which occurs due to the overflow of the timers. As soon as TF0 flag of Timer 0 is
set due to the overflow of Timer 0, an interrupt occurs and 8051 jumps to the address 000BH
which is the interrupt vector address of Timer 0. Similarly due to the overflow in Timer 1 the
program will jumps to the address 001BH which is the starting address of the Timer 1 IVT.

» Two external hardware interrupts INTO and INTI — Pin no. 12 (P3.2) and 13 (P3.3) are used
for external hardware interrupts INTO and INT1 respectively. Any external device may interrupt
the 8051 microcontroller through these pins. Memory locations 0003H and 0013H in the
interrupt vector table are used for INTO and INTI respectively. INTO and INT1 are also known
as EX0 and EX1 respectively.

» Serial communication interrupt — Serial communication has a single interrupt that belongs to
both receive and transmit. Interrupt vector location 0023H is used for serial communication.

Department of Electronics & Communication Engineering
8051 237

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Table-18.1: The entire interrupt vector table of 8051 microcontroller

Interrupt PROM Location | 8051 IC Pin Flag Clearing
Reset 0000H 9 Auto
External hardware interrupt 0 (INTO) 0003H 12 (P3.2) Auto
Timer 0 interrupt (TFO) 000BH Auto
External hardware interrupt 1 (INT1) 0013H 13 (P3.3) Auto
Timer 1 interrupt (TF1) 001BH Auto
Serial COM interrupt (RI and TT) 0023H Programmer clears it

Enabling and disabling interrupts — Upon reset the 8051 microcontroller disables all the five
interrupts except reset. Therefore it is the responsibility of the programmer to enable one or more
interrupts according to his requirement. The interrupts are enabled or disabled with the help of a
register called Interrupt Enable register (IE). Note that IE is a bit-addressable register.

IE: Interrupt Enable Register

IE.7 IE.6 IE.5 IE.4 IE.3 IE.2 IE.1 IE.O
EA - ET2 ES ET1 EX1 ETO EXO0
D7 D6 D5 D4 D3 D2 D1 DO

EA: If EA =0 all the interrupts are disabled i.e. no interrupt is acknowledged by 8051
If EA = 1 interrupts are individually enabled or disabled by setting or clearing its enable bit

ET2: IfET2 =0 Timer 2 overflow or capture interrupt is disabled (only for 8052)
If ET = 1 Timer 2 overflow or capture interrupt is enabled (only for 8052)

ES: If ES = 0 serial port interrupt is disabled
If ES = 1 serial port interrupt is enabled

ET1: IfETI =0 Timer 1 overflow interrupt is disabled
IfET1 =1 Timer 1 overflow interrupt is enabled

EX1: If EX1 =0 external interrupt INT1 is disabled
If EX1 =1 external interrupt INT1 is enabled

ETO: If ETO = 0 Timer 0 overflow interrupt is disabled
If ETO = 1 Timer 0 overflow interrupt is enabled

EX0: If EXO =0 external interrupt INTO is disabled
If EX0 = 1 external interrupt INTO is enabled

Fig.18.2: Interrupt Enable Register

Department of Electronics & Communication Engineering
8051 238

f:‘\"’g College of Engineering and Management, Kolaghat.

= CH 18: Programs of Interfacing with LEDs

If the timer interrupt in the IE register is enabled, whenever the timer rolls over, TF is raised and the
microcontroller is interrupted and jumps to the interrupt vector table to service the ISR written by
the programmer. When the microcontroller jumps to the ISR, it clears the TF flag automatically.
After completing the ISR it returns back to the instruction which was being executed at that time.

In this case we have used Timer 0 to generate the delay of 1 sec and Timer O Interrupt (TFO) is used
to sense the roll over of Timer 0 with the help of interrupt. As interrupt is used here, the memory
location 0000H which is basically the vector address of Reset interrupt, can not the used for storing
the program code. That’s why a jump instruction is used at 0000H to transfer the program sequence
to any other location where the program starts to be stored. At the same time another jump
instruction is stored at the vector address 000BH of Timer O Interrupt to transfer the program
sequence to the ISR when the microcontroller is being interrupted for Timer 0 overflaw. The delay
subroutine is written using Timer O inside the ISR. The delay calculation for 1 sec is identical as
described in Method 2. As a result, after every 50 ms time delay an interrupt is triggered due to the
overflow of Timer 0. Thus a delay of 1 sec is created after triggering Timer O Interrupt for 20 times.
To enable Timer 0 Interrupt the following bit pattern is to be set for IE register.

1 0 0 0 0 0 1 0
EA -- ET2 ES ETI EX1 ETO EXO0
D7 D6 D5 D4 D3 D2 DI DO

Therefore it is being observed clearly that 82H should to loaded to IE register to enable Timer 0
Interrupt. The implementation of same delay creation program using Timer 0 overflow interrupt is
given below.

Assembly Language Program 18.1 (Method 3):

SL. Label Instructions of 8051
ORG 0000H
LIMP MAIN

ORG 000BH
LJMP ISR

ORG 0030H
MAIN: MOV P2, #55H
MOV TMOD, #01H
MOV TLO, #0FDH

O ([0 | I | NN | B |W || —

—
o

Department of Electronics & Communication Engineering
8051 239

{ws% College of Engineering and Management, Kolaghat.

=0 CH 18: Programs of Interfacing with LEDs
SL. Label Instructions of 8051

11 MOV THO, #4BH

12 MOV IE, #82H

13 MOV R2, #20

14 SETB TRO

15 HERE: SIMP HERE

16

17 ISR: CLR TR0

18 DINZ R2, SKIP

19 XRL P2,#0FFH

20 MOV R2, #20

21 SKIP: MOV TL0, #0FDH

22 MOV THO, #4BH

23 SETB TRO

24 RETI

25 END

Writing Interrupt Service Routine (ISR) in C: 8051 C compiler (Keil) assigns a unique number to
each interrupt in 8051 microcontroller. To implement ISR for 8051 using C language the unique
interrupt number is placed after the keyword ‘interrupt’ in case of ISR (interrupt function) definition
as given below.

void ISR _Name() interrupt x ~ //x is the unique interrupt number

{
statement 1;
statement 2;
statement n;
H

Note: In case of ISR implementation in C for 8051 in Keil prototype declaration of ISR is not
allowed, although it is permitted for normal user-defined function.

Department of Electronics & Communication Engineering
8051 240

College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

Table-18.2: Different interrupts along with its unique interrupt number

Interrupt

Unique Interrupt Number

External hardware interrupt 0 (INTO)

0

Timer O interrupt (TFO0)

External hardware interrupt 1 (INT1)

Timer 1 interrupt (TF1)

Serial COM interrupt (RI and TT)

Timer 2 Interrupt (TF2) (only for 8052)

1
2
3
4
5

C Program 18.1 (Method 3):

#include<reg51.h>
#define TCOUNT 20

void Delay() interrupt 1
{
static unsigned char i = TCOUNT,;
TRO = 0;
i--
ifi == 0)
{
P2 = ~P2;
i=20;
}
TLO = 0xFD;
THO = 0x4B;
TRO = 1;
}
void main()
{
P2 = 0x55;
TMOD = 0x01;
TLO = 0xFD;
THO = 0x4B;
IE = 0x82;
TRO = 1;

for(;;);

Department of Electronics & Communication Engineering

8051

241

$ College of Engineering and Management, Kolaghat.
CH 18: Programs of Interfacing with LEDs

18.2: Write a program for 8051 microcontroller to blink an LED connected to P2.0 with a dalay
time of 1 second.

In this case the circuit shown in Fig-18.1 will work. The LED conneced at P2.0 (pin no. 21) will
blink with a delay of 1 second. The other LEDs connected at P2.1 to P2.7 will not change. The
delay calculation using Timer or without using Timer remain same as explained in Method 1 or
Method 2 of program 18.1. Here the entire program with delay subroutine using Timer 0 is given
below.

Assembly Language Program 18.2:

SL. Label Instructions of 8051
SETB P2.0
AGAIN: ACALL DELAY
CPL P2.0

SIMP AGAIN
DELAY: MOV TMOD, #01H
MOV R2, #20
REPIT: MOV TLO, #0FDH
MOV THO, #4BH
SETB TRO

HERE: JNB TF0, HERE
CLR TRO

CLR TFO

DINZ R2, REPIT
RET

O ([0 | I | NN | B |W ||

—
o

—
—_—

—
\S)

—_
W

,_
S

Department of Electronics & Communication Engineering
8051 242

Exercise

1) Write a program for 8051 microcontroller to blink an LED connected to P1.3 with a dalay time
of 1.5 second. Implement the delay subroutine using Timer 1 in Mode 1 and without using
Timer.

2) Write a program for 8051 microcontroller to implement a decade counter which will count with a
delay of 1 second. The counting of the decade counter should be displayed on four LEDs
connected to P2.0 — P2.3.

3) Write a program for 8051 microcontroller to implement a 4-bit counter which will count with a
delay of 2 seconds. The counting of the counter should be displayed on 2 digits 7 segment
displays.

4) Write a program for 8051 microcontroller to generate a square wave at P1.0 with an ON time of
3 ms and an OFF time of 10 ms using Timer 0 in Mode 1. Assume the frequency of the crystal to
be 11.0592 MHz.

5) Write a program for 8051 microcontroller to blink an LED connected to P1.3 with a dalay time
of 1.5 second. Implement the delay subroutine using Timer 1 in Mode 1 and using Timer.1
Overflow Interrupt (TF1).

Department of Electronics & Communication Engineering
8051 243

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

19. Programs on reading input switch state

19.1: Write a program for 8051 microcontroller to read the states of two input switches connected
at P1.0 and Pl.1 and generates different blinking patterns of 8 LEDs connected to Port 2
according to the four input patterns.

Here two ON-OFF switches SW1 and SW2 are connected at P1.0 and P1.1 respectively. When the
switch is pressed ON, it gives 1 to the corresponding input pin of the 8051 microcontroller and
when it is OFF, it sends 0 to the port. Therefore SW1 and SW2 generates four input patterns at Port
1 and reading those patterns the 8051 microcontroller sends four different blinking patterns to Port2
as given in the following table.

SL |SW2 |[SW1 |Output Description of output pattern
Pattern

1 |0 0 PTRNO 0000 0000 — All LEDs will remain off.

2 |0 1 PTRNI1 0011 0011 — 1100 1100
1 l
1100 1100 « 0011 0011
3 1 0 PTRN2 0000 0000 — 0001 1000 — 0011 1100 —0111 1110
T !
0001 1000« 0011 1100 «— 0111 1110 «—1111 1111
4 |1 1 PTRN3 0000 1111 — 1111 0000

1 |
1111 0000 « 0000 1111

To provide these four input patterns using two switches, SW1 and SW2 we have used a input
module KSR-IP1 where eight ON-OFF DPDT switches are used along with a unidirectional buffer
IC 741.S244. Therefore this input module is capable to deliver 8-bit binary pattern to any port of the
8051 microcontroller. The input module along with its circuit diagram are shown in Fig-19.1 and
Fig-19.2 respectively.

L
"
R
L)
L
L
P
L
P
B

Fig-19.1: KSR-IP1 Input Module

Department of Electronics & Communication Engineering
8051 244

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

____“________K_S&Iil__u__________“_|
25kl E_iﬂpits_ _____
SWi_DPST SWa4_DPST SWS_DPST SWE_DPST
[= 1 b 1=
2
=

Fig-19.2: Circuit diagram of KSR-IP1 Input Module

Among these eight switches (SW1 — SWS) two switches SW1 and SW2 are connected to P1.0 and
P1.1 of Portl of 8051. The entire circuit diagram with input switches and eight LEDs connected to
Port2 is shown in Fig-12.3. Here the whole circuit is driven by the external +5V power supply after
burning the 8051 chip using USBASP programmer. For this reason all the jumpers (JP2, JP3, JP4)
except JP1 are made shorted.

KSR-IP1

external
powes supply

g :

?

YYV ¥
i‘jr

Yvy

I
|
|
1
T

Fig-19.3: Circuit diagram of KSR805152-MB1 board. input module KSR-IP1 connected to Portl
and eight L EDs connected to Port2

Department of Electronics & Communication Engineering
8051 245

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

To configure any port in 8051 as input port the port register is to be loaded with FFH. As Portl here

is used as an input port, it has been initialized with FFH at the beginning of the program.

Assembly Language Program 19.1:

SL. Label Instructions of 8051
1 MOV TMOD,#01H
2 MOV P1,#0FFH
3 AGAIN: MOV P2#00H
4 MOV A,P1
5 ANL A,#03H
6 CINE A,#00,SKIP
7 SIMP AGAIN
8 SKIP: CINE A#01H,L1
9 ACALL PTRNI1
10 L1: CINE A#02H,L2
11 ACALL PTRN2
12 L2: CINE A,#03H,L3
13 ACALL PTRN3
14 L3: SIMP AGAIN
15 PTRNI: MOV P2#33H
16 AGI: MOV A,P1
17 ANL A, #03H
18 CINE A#01H,RETN1
19 MOV R2,#20
20 REPI: MOV TLO,#08H
21 MOV THO0,#4CH
22 ACALL DELAY
23 DINZ R2,REP1
24 XRL P2 #0FFH
25 SIMP AG1
26 RETNI: RET

Department of Electronics & Communication Engineering

8051

246

College of Engineering and Management, Kolaghat.
CH 19: Programs on reading input switch state

SL. Label Instructions of 8051
26 PTRN2: CLR 05H
27 MOV R6,#00H
28 AG2: MOV A,P1
29 ANL A #03H
30 CJINE A #02H,RETN2
31 MOV A,R6
32 MOV C,05H
33 CPLC
34 RLCA
35 MOV 05H,C
36 MOV R6,A
37 MOV R2,#30
38 REP2: MOV TLO,#08H
39 MOV THO,#4CH
40 ACALL DELAY
41 DJNZ R2,REP2
42 SIMP AG2
43 RETN2: RET
44 PTRN3: MOV P2 #0FH
45 AG3: MOV A,P1
46 ANL A #03H
47 CJNE A, #03H,RETN3
48 MOV R2,#30
49 REP3: MOV TLO,#08H
50 MOV THO,#4CH
51 ACALL DELAY
52 DJNZ R2,REP3
53 XRL P2,#0FFH
54 SIMP AG3

Department of Electronics & Communication Engineering
8051 247

“’f:‘f”s College of Engineering and Management, Kolaghat.

CH 19: Programs on reading input switch state

SL. Label Instructions of 8051
55 RETN3: RET
56 DELAY: SETB TRO
57 HERE: JNB TFO,HERE
58 CLR TRO
59 CLR TFO
60 RET

Department of Electronics & Communication Engineering

8051

248

20. Programs of 7 segment display interfacing

A 7-segment display is commonly used in electronic display devices for decimal numbers from 0 to
9 and in some cases, basic characters. The use of LEDs in seven-segment displays made it popular,
bright and clear, easy to interface and cost effective. There are 7 illuminating segments (named as a,
b, c, d, e, f, g) and a dot (named as DP) in a 7-segment display. Corresponding to each segment and
dot there is a LED inside the 7-segment display. A particular segment in a 7-segment display
becomes illuminated if the corresponding LED of that segment glows due to the forward biasing.
The pin-out of a 7-segment display is shown in Fig-20.1.

g f caa b g f cca b
=T - I - - - | O 0o oo
= El
f b f b

9
e < -] €
e s
= I - B - I - I - | O Ooono
e d cac DP e d cc c DP

Fig-20.1(a): Pin-out of Common Anode Fig-20.1(b): Pin-out of Common Cathode

7-segment display 7-segment display

Basically there are two types of 7-segment display namely 1) Common Anode 7-segment display
and 2) Common Cathode 7-segment display.

1) Common Anode 7-segment display — In this construction all the anodes of eight LEDs are
connected together to form a common terminal CA as shown in Fig-20.1(a). Other eight cathode
terminals are connected to eight pins namely a, b, c, d, e, f, g and DP. The internal schematic
diagram of a common anode 7-segment display is shown in Fig-20.2.

Fig-20.2: Internal schematic diagram of common anode 7-segment display

Department of Electronics & Communication Engineering
8051 249

2) Common Cathode 7-segment display — In this construction all the cathodes of eight LEDs are
shorted together to form a common terminal CC as shown in Fig-20.1(b). Other eight anode
terminals are connected to eight pins namely a, b, ¢, d, e, f, g and DP. The internal schematic
diagram of a common cathode 7-segment display is shown in Fig-20.3.

.

Fig-20.3: Internal schematic diagram of common cathode 7-segment display

Among these two configurations common anode 7 segment display has been used to design the 7
segment display driver board where three 7 segment displays have been used to show any three
digit decimal number in the range of 0 to 999. We know that the current rating of any port except
Port 0 is around 15 mA in total which is not sufficient to drive the 7 segment display. That’s why a
driver IC ULN2803 is used to deliver the required current to the 7 segment display to glow it
prominently. ULN2803 comprises eight open collector darlington pair transistors inside it. Here
each LED of the common anode 7 segment display is connected to the collector of each darlington
pair via a current limiting resistance of 220 Q. If the base of a darlington pair is made high, the
darlington pair makes the collector shorted to ground. As a result a current will start to flow through
the LED of a particular segment making that segment to be illuminated. Thus any decimal digit in
the range of 0 to 9 can be shown on the 7 segment display. Now these three 7 segment displays are
driven by a common 8-bit bus with the help of multiplexing using three 74LS373 latches. At any
particular time only one latch will be enabled to store the bit pattern to display a digit on a 7
segment display. In this way all of the three 7 segment displays shows the digits one after another,
which forms a complete 3 digits number finally. The circuit diagram of the 3 digit 7 segment
display driver is shown in Fig-20.4.

Department of Electronics & Communication Engineering
8051 250

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

5 Power Supply Connectar
o b +BY PWR_FLAG
o] P - 5y n +5V .
8 Pin Header
";D a2l 75EG2 7SEG3
LEDTT g uF COM ANDD Ics = 5 (6 0 o B = i COM ANDD!
BT 12204 ~§ICE) -
R25 220 ohin i
330 ohm Al T P P i 2400 S oo 3d00 5 oof-2 e PSS S 1 a
oD ATt 02« zfE1—2Ho1 T pipt Sdpr T ofE—2e . ozf Ele T
clt e R 5 foa oL 112 2|8 2 . pafl Ai¢
i 2 4] [] 8 9 i 2| gt lad?
w ity of Ee i 0% o D3 D3 4 O3 T p it
et 1E 1805 = PP 12io0 [i B3, B ot Sl F pgftd e
FI2 S0 7 gl | 515 1§ peflh tilps B opsfis el 2 gehs 91f
3 ca c.ls 1307 :7; 6o & o6 i; 1; 06 & 06 lg iz orfi2 ide cald
+Blea o oB 2 s 19 1p7 o7 18 157 o7 8l 2 osfd P CA
z{,__ Lo b C
GND g o 0E & GND PWRFLAG
9 Gl
S =
< <~
GHND GHND
+5V
75E61
COM_ANODE IC4
s L2
1 2 fos 5 pol2
2 5fpn 7 pafl
3 6 7
02 o2
ol (R 8
03 ., D3
5 a3, B o4 13
6 1505 1 pgl i
= e ¢ s
L8 £ 819 1g7 o7
GHD &
=1
! o
GND 3 Pin Header
2

Fig-20.4: Circuit diagram of 3 digit 7 segment display driver

LED IWMEER

CAASeERaD

ICE
ULNZEOY/ ULN280K

esaasasLaRD

N NN ¥ KB F

MPHC LAB. DEPT.

OTSIGHED BY DEBOTTAM DAS

|
EsmDooEee
ich
13, ULNZ804

3 DIGIT 7 SEGMENT DISPLAY DRIVER (DDB05152-7SEG V1.0)

Fig-20.5: Front view of 3 digit 7 segment display driver board

Department of Electronics & Communication Engineering

8051

251

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Now this 7 segment display driver can be used for various purposes to implement different
programs of 8051.

20.1: Write a program for 8051 microcontroller to implement a Mod-N counter with the help of 7
segment display, where the maximum value of N can be 256.

In this case a Mod-N counter is implemented using 8051 microcontroller and a 3 digit 7 segment
display driver where the value of N may be up to 256. We know that a Mod-N counter has N no. of
states starting from 0 to (N-1). Therefore the Mod-N counter starts counting from 0 and ends to (N-
1) and returns to 0 again to repeat the same counting sequence. Here register RS is used to count
from 0 to (N-1). After every counting 3 digits (Digitl, Digit2 and Digit3) of counting value are
extracted from the counting value (packed BCD) stored in the register RS and these digits
(unpacked BCD) are converted to its equivalent 7 segment codes using a lookup table. Finally these
7 segment codes are sent to the corresponding 7 segment displays one by one to glow the entire 3
digits for representing a counting value. The selection of these 7 segment displays is done using
Latch Enable (LE) pin of 74LS373 IC which are connected to P3.0, P3.1 and P3.2 of Port3.
Therefore it is clear that Port2 is connected to the common 8-bit data bus of the display driver and 3
pins of Port3 (P3.0, P3.1, P3.2) are connected to LE pins of three 74LS373 ICs. All the 7 segment
displays used here is common anode type which are driven by another three driver ICs namely
ULN2803. The circuit diagram of 3 digit 7 segment display driver board is shown in Fig.20.6 for

visualization.
i Power Supply Connectar
I] +5v 3 45V PWR_FLAG
i | " rS
L hee +5¥ T +5V
— 8 Pin Header
“éb a2l 75EG2 7SEGE
- 10uF COM_ANDDE 15 =) % 5 5 0 T o 1] COM ANDDE
14 ic25 Al oics comle
R25 220 ohm 2 220 ohm
330 ohm tg Zio0 S oo 2400 B oo it -an_— 018 A

a o

M me 0o

Iﬂ»—-lvu-ban-l

= [1 b fre

= B [

000

o F
GHD ULN2803

o F &
mqe-miﬂum.-

s fis |

i [ra 1O [0

oDo

Flaw

R-X -

R

s

g -

e =]

ooo

+ G B

=R-%-]

T Gira

5 o [[o

mFEG

200

o

|l

*r‘

& [b

! bl 8
aND I bl 5 E
3 14 14 2 15 6 3
=—{Fia]—jo6 16 08 g s 05 g a8 B = oep—RE—F
3 ea Lo 1357 7 16405 T o8 1; ‘; o6 £ pelll iz orfi2 0y cafd
—len orlE 14 oa] 19 1p7 o7t 18 {py o7 2 Bl 2 osfd Sor call
GHD 5 HEp '1 qoE 3 GHD PWRFLAG
9 Gl
= =
< <

7SEGL
COM ANODE IC4
o L_adow (s L2

A; 1?01—_1’4”1; 240 B oo i
ALy eE—R2——Ho2 . 2 o1 Dif—

B T =2 803 L. 132 6 1oz 02
el |2 Aoy Bl 2103 pif-&
e tos 2 51200, F opufli2
e Sos |t 500 B psfid
—: & G *5,0 — 130y 15105 £ ps|dl
L Hos 2 f® 19 {07 orHE
b e
v 1

(]

=

-3
a8 onp

o

=

j#)

m\m

3 Pin Header
2

Fig-20.4: Circuit diagram of 3 digit 7 segment display driver

Department of Electronics & Communication Engineering
8051 252

Now 7 segments (a, b, ¢, d, e, f, g) and DP of every 7 segment display are controlled by the pins of
Port2 as follows.

P2.0 —> a P2.1 —»b P22 — ¢ P23 —d
P24 —e P25 —>f P2.6 > g P2.7 — DP
Depending upon the above configuration the following table gives the 7 segment codes

corresponding each digits and these 7 segment codes are stored in a lookup table starting from the
memory address 200 in the code memory of 8051.

P2.7|P2.6 | P2.5|P2.4|P2.3|P2.2|P2.1 P2.0 Code in MeilloiyA(:I(lire;ses Displayed Single
DP ¢ f | e d C b a Hex seOgrSnZ;et coedes Digit Number
0 0 1 1 1 1 1 1 3F 200 0

0 0 0 0 0 1 1 0 06 201 1

0 1 0 1 1 0 1 1 5B 202 2

0 1 0 0 1 1 1 1 4F 203 3

0 1 1 0 0 1 1 0 66 204 4

0 1 1 0 1 1 0 1 6D 205 5

0 1 1 1 1 1 0 1 7D 206 6

0 0 0 0 0 1 1 1 07 207 7

0 1 1 1 1 1 1 1 7F 208 8

0 1 1 0 1 1 1 1 6F 209 9

If 254 1s to be displayed on the 7 segment display driver, the 7 segment code of 4 (LSD) i.e. 66H
will be sent to the data bus via Port2 first, then P3.0 is made high keeping P3.1 and P3.2 low to
select Digitl so that the 7 segment code 66H reaches only to Digitl to glow 4 on it. Other two digits
5 and 2 (MSD) are also shown on Digit2 and Digit3 respectively maintaining the above mentioned
sequences and enabling P3.1 and P3.2 respectively. Thus the entire counting value 254 will be
shown on 3 7 segment displays finally. In this program a delay of 1 sec approximately is
maintained between two consecutive counting values. The assembly language program for Mod-N
counter is given below.

Department of Electronics & Communication Engineering
8051 253

College of Engineering and Management, Kolaghat.
CH 20: Programs of 7 segment display interfacing

Assembly Language Program 20.1:

SL. Label Instructions of 8051
1 ORG 0000H
2 N EQU 256
3 TEQU 10
4 MOV P3, #00H
5 MOV DPTR, #200
6 START: MOV R1, #N
7 MOV RS, #00H
8 BACK: ACALL CONVT
9 ACALL DELAY
10 INC RS
11 DINZ R1, BACK
12 SIMP START
13
14 CONVT: MOV B, #100
15 MOV A, RS
16 DIV AB
17 MOVC A, @ A+DPTR
18 MOV P2, A
19 NOP
20 NOP
21 NOP
22 NOP
23 SETB P3.1
24 NOP
25 NOP
26 NOP
27 NOP
28 CLR P3.1

Department of Electronics & Communication Engineering

8051

254

College of Engineering and Management, Kolaghat.

CH 20: Programs of 7 segment display interfacing

SL. Label Instructions of 8051
29 MOV A, B
30 MOV B, #10
31 DIV AB
32 MOVC A, @ A+DPTR
33 MOV P2, A
34 NOP
35 NOP
36 NOP
37 NOP
38 SETB P3.2
39 NOP
40 NOP
41 NOP
42 NOP
43 CLR P3.2
44 MOV A, B
45 MOVC A, @ A+DPTR
46 MOV P2, A
47 NOP
48 NOP
49 NOP
50 NOP
51 SETB P3.0
52 NOP
53 NOP
54 NOP
55 NOP
56 CLR P3.0
57 RET

Department of Electronics & Communication Engineering

8051

255

W"’z College of Engineering and Management, Kolaghat.
N7

CH 20: Programs of 7 segment display interfacing

SL. Label Instructions of 8051
58 DELAY: MOV R2, #T
59 L2: MOV R3, #255
60 L3: MOV R4, #255
61 L4: DINZ R4, L4
62 DINZ R3, L3
63 DINZ R2, L2
64 RET
65
66 ORG 200 //Lookup table starts from 200 memory address
67 DB 3FH, 06H, 5BH, 4FH, 66H, 6DH, 7DH, 07H, 7FH, 6FH
68 END

Department of Electronics & Communication Engineering
8051 256

College of Engineering and Management, Kolaghat.

i EC493: Microprocessor and Microcontroller Laboratory

APPENDIX - A

INDEX SHEET

Department of Electronics & Communication Engineering

LABORA T O RY NAME: et e e et et e e e e e e et e e e e e

INAME s e COLLEGE ROLL NO. ...
Index Sheet

SL | Title of the Experiment Exp. Date of Date of Page | Grade | Teacher’s
No. Experiment | Submission No. Signature

OE
oG
OF
OPp
ONS

OE
0G
OF
OPp
ONS

OE
OG
OF
Op
ONS

OE
0G
OF
oPp
ONS

OE
0G
OF
OPp
ONS

OE
0G
OF
op
ONS

OE
0G
OF
OPp
ONS

OE
OG
OF
op
ONS

OE
0G
OF
oPp
ONS

** E: Excellent G: Good F: Fair P: Poor NS: Not Submitted

College of Engineering and Management, Kolaghat.

i EC493: Microprocessor and Microcontroller Laboratory

APPENDIX - B

CODING SHEET

Department of Electronics & Communication Engineering

EC493: Microprocessor & Microcontroller Laboratory

Exp. No.

Page No.

Title:

Date:

Program Description:

Assembly Language Program

Machine Language Program

Hex Code Comments
Label Mnemonics Memory Address
Opcode Operand
Student Roll No: Teacher Signature:

College of Engineering and Management, Kolaghat.

i EC493: Microprocessor and Microcontroller Laboratory

APPENDIX - C

SAMPLE LAB ASSESSMENT SHEET

Department of Electronics & Communication Engineering

Electronics and Communication Engineering Department

Continuous Lab assessment for 4ECE

Microprocessor and Microcontroller Lab [EC 493]

EN: Experiment No.

FA: File Assessment

*PRFM: Performance-

E = Excellent (10), G = Good (8),

F = Fair (6), P = Poor (4),

AB = Absent (4), NS = Not Submitted (2)

sL. | RollNo. Name UNIV Roll No. Week- Week- Week- Week- Week-
EN FA | PRFM| EN FA | "PRFM| EN FA | "PRFM | EN FA | PRFM | EN FA *PRFM
1 |ECE/24/001|DURBADAL ROUTH 10700324010
2 |ECE/24/002|ANIKET PANDA | 10700324009
3 |ECE/24/003|[SHUBHANKAR BOY 10700324008
4 |ECE/24/004|RATUL ROY 10700324007
5 |ECE/24/005|DEVDIPTA MONDA| 10700324006
6 |ECE/24/006 |SRIJIT DAS 10700324005
7 |ECE/24/007|RIYA HEMBRAM | 10700324004
8 |ECE/24/008|SUSMITA SENA 10700324003
9 |ECE/24/009|[SOUMEN MANNA | 10700324014
10 |ECE/24/010[SWARNAVA DAS | 10700324001
11 |ECE/24/011[SAYAN SAMANTA | 10700324002
12 |ECE/24/012 |ANKAN MATITI 10700324013
13 |ECE/24/013|ARUP MAITY 10700324012
14 |ECE/24/015[NIBEDITA DAS 10700324011

Name of the Teacher

Signature with date

Exp. No.

Experiment Details

Performed in

